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Section 2: Climate and Water 

Contributing Authors: Vinod Mahat and Axel Anderson 

2.1 Introduction 

The eastern slopes of the Rocky Mountains in Alberta, Canada have highest regional 

precipitation and the highest runoff ratios (annual streamflow as a proportion of annual 

precipitation) which generates the majority of streamflow for many rivers including the Oldman 

River that provides water for domestic and recreational purposes and supports broad base of 

regional agriculture and fisheries industries in Southern Alberta (Bladon et al., 2008; Emelko et 

al., 2011; Silins et al., 2009; Stone et al., 2001).  Hydrology of Mountainous regions are most 

likely to be affected by the climate change as precipitation would change from snow to rain in 

warming climate (IPCC, 2007).  Headwater streams and rivers supporting the Oldman River 

system originates as snow in the eastern slopes of Rocky Mountain and thus are vulnerable to 

warming climate.  Forest change may compound the impacts with the climate change.  Given 

the present near full allocation of water for human use in this region along with the possibility 

of longer-term limitations in water supply, understanding and predicting how climate and 

forest changes in this region are likely to affect the production/timing of streamflow are 

increasingly important (Silins et al., 2009). 

There have been numbers of studies into the potential effects of climate change on hydrology 

and water resources in many regions.  Apparent trends in streamflow due to climate change are 

both increasing and decreasing (Arnell, 1999; Zheng et al., 2009).   Arnell (1999) investigated 

the climate change impacts on water supply on the global scale and reported up to 15% 

decrease in streamflow in major river basins in year 2050.  Studies carried out in different 
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regions in North America, i.e., Jha et al. (2004) (Upper Mississippi River Basin, USA), Stone et al. 

(2001) (Missouri River Basin, USA), Hamlet and Lettenmaier (1999) (Columbia River Basin, USA), 

Kienzle et al. (2012) (North Saskatchewan River basin, AB, Canada) and Stahl et al. (2008) 

(Bridge River basin, BC, Canada) have reported the streamflow up to 80% increase in fall and 

winter and 10 to 20% decrease in summer.  Barnett et al. (2005) studied the various large 

basins in the globe and reported streamflow regime in snowmelt-dominated river basins is 

most sensitive.  As melting of winter snow occurs earlier in spring due to temperature rise, 

there is likely to be future water scarcity in the snow melt dominated regions during the 

summer.  Other studies (e. g. Barnett et al., 2008; Hidalgo et al., 2009; Mote, 2003; Pierce et al., 

2008) that are focused on the snowmelt dominated regions have also reported a reduction in 

snow and early shift in the timing of the streamflow. 

GCMs (General Circulation Models or Global Climate Models) are widely used to project future 

climates under assumed greenhouse gas emission scenarios, both in space and time (e.g. IPCC, 

2007; Mehrotra and Sharma, 2010).  However, the projections from these models are typically 

provided at coarse resolutions, i.e. 200 km or more in space and monthly time periods (Wang et 

al., 2011).  The hydrologic processes of interest normally occur at scales on the order of tens to 

thousands of square kilometers; so the resulting climate projections from GCMs cannot be 

directly used as input for models at the resolution of interest to hydrologists (Epstein and 

Ramírez, 1994; Morrison et al., 2002).  Consequently, various downscaling techniques that 

include stochastic, statistical, or dynamic downscaling (Fowler et al., 2007; Maurer et al., 2009; 

Wang et al., 2011) have been developed to derive higher resolution climate data from the 

coarser resolution climate projections.  Dynamic downscaling refers to the use of regional 
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climate models (RCMs) (Fowler et al., 2007; Mehrotra and Sharma, 2010).  Catchment scale 

hydrological climate change impact studies have used dynamically downscaled output (e.g. 

Fowler and Kilsby, 2007; Wood et al., 2004), simple statistical approaches such as multiple 

regression relationships (e.g. Jasper et al., 2004; Wilby et al., 2000), and stochastic weather 

generator (e.g. Evans and Schreider, 2002). 

Potential impacts of future climate change on hydrology have been assessed through the 

application of hydrological models driven by the downscaled GCM derived future climates 

(Campbell et al., 2011; Forbes et al., 2011; Kienzle et al., 2012; Loukas et al., 2002; Toth et al., 

2006).  A detailed, physically based model could be an effective tool; however, applying 

detailed model may require large numbers of forcing which are seldom available especially in 

the mountain regions studies.  So, the selection of the model may depend on the availability 

data for the study region. 

The purpose of this study is to evaluate the effects of potential future climate and forest 

changes on the high water yielding headwaters of Alberta’s eastern slopes, focusing on 

southern portions that supply the overwhelming majority of useable surface water for 

communities.  These Mountain regions are more susceptible to future temperature change as 

large fraction of the precipitation falling in the regions is snow which partly changes into rain in 

warming climate affecting the timing and magnitude of streamflow (Forbes et al., 2011; Kienzle 

et al., 2012).  In this study, we include high mountains and examine the possible compounding 

impacts of forest change.   
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2.2 Materials and Methods 

2.2.1 Study Watershed and Data 

The Crowsnest Creek watershed (Figure 2.1), centered at 49.64˚ N, 114.55˚ W, is an important 

watershed in Southern Alberta, Canada feeding Oldman River which is closed to the issuing of 

new water extraction licenses due to a growing imbalance between demand and supply 

[Emelko et al., 2011].  This watershed has a drainage area of 384 km2 with the elevation ranges 

from 1236 to 2732 m.  The watershed is broadly characteristic of Rocky Mountain front-range 

physiographic settings.  Vegetation in the watershed is characterized by Lodgepole pine (Pinus 

contorta Dougl.ex Loud. Var. latifolia Engelm.) dominated forest at lower elevations, subalpine 

forest at mid elevations dominated by Engelmann spruce (Picea engelmannii Parry ex Englem.) 

and subalpile fir (Abies lasiocarpa [Hook.] Nutt.) with alpine ecozones at higher elevations 

characterized by alpine meadow vegetation and bare rock extending above tree line [Silins et 

al., 2009].   

The majority of the total annual precipitation (50 to 70%) falls as snow from October to April in 

these catchments.  Streamflows in the study area are characteristic of very high water yielding 

Rocky Mountain streams.  Spring snowmelt generally produces the highest continuous 

streamflows.  Rain-on-snow or mid-winter melt events are a common occurrence, producing 

some of the larger flows, with mean daily discharge in excess of 30 mm day-1.  The late summer 

and over winter period are generally near 0.5–2 mm day-1 (Silins et al., 2009).  Hydrology of all 

these catchments are snowmelt dominated and peak flows are driven by spring snowmelt or 

rain on spring snowmelt.   
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Although climate has been monitored continuously with seven climate stations within this 

watershed by Environment Canada 

(http://climate.weatheroffice.gc.ca/climateData/canada_e.html), long record of climate data 

(i.e., about 32 years, from 1965 to 1997) is available only at Coleman climate station which lies 

approximately at the center of the watershed (Figure 1).  We use climate data recorded at this 

station to drive the daily climatological condition across the entire watershed, here in called the 

Coleman climate station.  Streamflow data used in this study are the data recorded at gauging 

station, Crowsnest River at Frank (Hydat Station: 05AA008) located close to the city of 

Blairmore, AB.  This station is well suited for the analysis as long-term records of streamflow 

data, which are necessary for calibrating and validating the model that simulates the effect of 

climate change on streamflow, are available at this station.

 

Figure 2.1  Crowsnest Creek watershed with climate station, Coleman and gauging station, Crowsnest at Frank.
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2.2.2 Methodology  

The study methodology to assess the climate change impacts on streamflow is done in three 

steps:  

• Develop estimates of future monthly climate means (precipitation, maximum 

temperature Tmax, and minimum temperature, Tmin) in relation to observed 

(reference) climates at the Coleman climate station, 

• Disaggregate (temporal downscale) monthly climate means into daily realizations for 

use with hydrological model. 

• Hydrological model calibration, application and parameter uncertainty. 

Estimates of future monthly climate means 

Projected monthly climate means used in this study are GCM outputs that are downscaled to 

1x1 km grids using climateWNA model (Wang et al., 2006; Wang et al., 2011).  ClimateWNA 

uses a combination of bilinear interpolation and elevation adjustment to downscale the climate 

data.  GCM used in this study is Canadian Climate Center’s Modeling and analysis (CCCma) third 

generation coupled global climate model (CGCM3) (http://www.ec.gc.ca/ccmac-

cccma/default.asp?lang=En&n=4A642EDE-1).  ClimateWNA downscaled 1x1 km grids from 

within the study watershed boundary are averaged to estimate the watershed averaged 

monthly climate means for reference and future periods, and changes in monthly climate 

means, (i.e., change in mean monthly daily maximum temperature, ΔTmax, change in mean 

monthly daily minimum temperature, ΔTmin and change in monthly precipitation, ΔP) are 

calculated as: 

〖ΔT〗_max=(〖T_max〗^F+ε)-(〖T_max〗^R+ε) (1) 
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〖ΔT〗_min=(〖T_min〗^F+ε)-(〖T_min〗^R+ε) (2) 

ΔP=  〖ε P〗^F/〖ε P〗^FR     (3) 

where, TmaxR, TminR and PR are watershed averaged mean monthly daily maximum 

temperature, mean monthly daily minimum temperature and monthly precipitation, 

respectively for the reference period, and TmaxF, TminF and PF are watershed averaged mean 

monthly daily maximum temperature, mean monthly daily minimum temperature and monthly 

precipitation, respectively for the future period.  ε is the bias.  

Reference period used in this study is the period between 1965 and 1997, chosen because of 

the observed daily climates available for the hydrological model calibration and validation 

during this period.  Future periods selected are anomalies for 30-year normal periods 2011–40 

(2020s), 2041–70 (2050s), and 2071–2100 (2080s).  Three emission scenarios (A1B, A2, and B1) 

that are developed utilizing the intergovernmental Panel on Climate Change (IPCC) Fourth 

Assessment Report, AR4 are used.  A1B scenario describes “a future world of very rapid 

economic growth, global population that peaks in mid-century and declines thereafter, and 

rapid introduction of new and more efficient technologies”.  A2 scenario describes “ economic 

development is primarily regionally oriented and per capita economic growth and technological 

change are more fragmented and slower compared to A1B and B1 scenarios; and B1 scenario 

describes “a convergent world with the same global population that peaks in mid-century and 

declines thereafter, as in the A1 storyline, but with rapid changes in economic structures 

toward a service and information economy, with reductions in material intensity, and the 

introduction of clean and resource-efficient technologies” (IPCC, 2007). 
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We assume the relative changes in monthly climate means at the Coleman climate station is 

equivalent to the changes in watershed averaged monthly climate means, ΔTmax, ΔTmin and 

ΔP that are obtained from equations (1), (2) and (3).  Daily observed climate at Coleman is 

aggregated to monthly scale and perturbed with these ΔTmax, ΔTmin and ΔP to give future 

monthly climate means at the Coleman climate Station.   

Disaggregation  

A weather generator can be used to disaggregate monthly climate means into daily realizations 

for use with hydrological model [Richardson and Wright, 1984].  Weather generators are 

stochastic numeric models that simulate daily weather data at a single site using the separate 

statistical properties for each month observed daily weather data for the given site (Racsko et 

al., 1991; Richardson et al., 1998; Semenov and Brooks, 1999).  There are two types of daily 

weather generators used to determine wet or dry days and precipitation amount.  Wet days are 

days with precipitation larger than zero.  The first type, the Markov chain approach, uses a two 

state first order Markov chain to generate wet or dry day using a random process conditional 

upon the state of the previous day (Hughes et al., 1999).  If a day is determined as wet, then the 

precipitation amount is computed using two-parameter gamma distribution.  The second type, 

spell-length approach, generates wet or dry series; length of each series is chosen randomly 

from the wet and dry semi-empirical distribution for the month in which the series starts 

(Racsko et al., 1991; Wilks, 2012).  The wet day precipitation value is generated using semi-

empirical precipitation distribution independent of the length of the wet series or the amount 

of precipitation on previous days (Semenov and Brooks, 1999).  
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We use Long Ashton Research Station Weather Generator (LARS-WG) that uses more flexible 

semi-empirical approach compared to the Markov chain approach that uses a simple standard 

distribution to generate series of wet and dry day.  In LARS-WG, daily Tmax and Tmin are 

modeled separately as stochastic processes with daily means and standard deviation 

conditioned on the wet or dry status of the day (Semenov and Brooks, 1999).  The seasonal 

cycles of means and standard deviations are modeled by finite Fourier series of order 3 which is 

constructed using observed mean values, sine and cosine curve and phase angle for each 

month.  LARS-WG also uses autocorrelation values for Tmin and Tmax derived from observed 

weather data to model the temperature.  LARS-WG is available to the broader climate change 

impact study community via Environment Canada web site 

(http://www.cccsn.ec.gc.ca/index.php?page=lars-wg). 

Monthly statistical parameters of climates observed at the Coleman climate station are 

extracted using LARS-WG, and a new set of daily climates for the reference period 1965 -1997 

are generated.  These generated climates are compared with the observed climates at Coleman 

station to evaluate the performance of LARS-WG.  Once reference climates are generated and 

validated, nine sets (for three different scenarios: A1B, A2 and B1, and for three different time 

periods: 2020s, 2050s and 2080s) of future periods daily climates are generated disaggregating 

the future monthly climate means estimated for Coleman station.  Although observed daily 

climates are available for reference period, we use stochastically generated climates to provide 

input to the hydrological model to simulate the reference period streamflow.  This makes the 

reference and future periods streamflows comparable because they are generated with the 

same methods, but reflect the statistical properties of the climate periods.   



30 

Hydrological model calibration, application and parameters uncertainty 

HBV-EC 

A common conceptual hydrological model, HBV-EC is used to study the hydrological impacts of 

climate change.  HBV-EC is a version of the conceptual HBV model (Bergstrom and Forsman, 

1973; Lindström et al., 1997) that simulates daily/hourly discharge using daily/hourly 

precipitation and temperature and monthly estimates of evapotranspiration as input.  The 

model is based on the concept of grouped response units (GRUs) that groups DEM/GIS grid cells 

having similar elevation, aspect, slope and land cover.  HBV-EC uses elevation bands subdivided 

into different land types (open, forest, glacier and water), slopes and aspects.  Lateral climate 

gradients in HBV-EC are represented by subdividing the basin into different climate zones; each 

of which is associated with a climate station and a unique parameters set (Jost et al., 2012).  

The model consists of three main modules: 1) a snow module that simulates snow 

accumulation and a degree-day snowmelt approach; 2) a soil module that simulates 

groundwater recharge and actual evaporation as functions of soil moisture; and 3) a runoff 

transfer module that consists of one upper nonlinear reservoir representing fast and one lower 

linear reservoir representing slow responses to delay the runoff in time.  Detailed descriptions 

of HBV-EC are given by Hamilton et.al (Hamilton et al., 2000).  HBV-EC is an open source, 

available at modeling framework ‘Green Kenue’ (http://www.nrc-

cnrc.gc.ca/eng/solutions/advisory/green_kenue/download_green_kenue.html) developed by 

National Research Council Canada in collaboration with Environment Canada. 
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Hydrological Model Calibration 

HBV-EC model is driven by the thirty two years (1965-1997) climates recorded at the Coleman 

climate station to simulate the streamflow which is compared with observed flow at Frank.  The 

watershed is divided into five different elevation zones which are further divided into different 

land use types, slope and aspects.  Temperature and precipitation lapse rates within the 

watershed are calculated using the climateWNA generated monthly climate data.  The model 

was calibrated using the optimization algorithm Genoud (written in the rgenoud R application 

(Mebane and Sekhon, 2011)) that combines evolutionally algorithm methods with steepest 

gradient descent algorithm (Jost et al., 2012) to maximize the Nash-Sutcliffe efficiency (NSE) 

(Nash and Sutcliffe, 1970) of the streamflow. 

Application 

The calibrated model is then driven by the LARS-WG generated daily climates to simulate the 

streamflows for reference and future periods.  Reference period model simulated streamflow is 

compared with observed flow to determine how well the LARS-WG generated climate can 

represent the properties of the observed streamflow. Simulated streamflows for the reference 

and future periods are compared to assess the climate change impacts. 

Parameter uncertainty 

In HBV-EC model parameters can be interdependent, and different parameter sets can produce 

good results (high NSE) for one period but not for another (Beven, 2000; Seibert et al., 2010; 

Steele-Dunne et al., 2008).  To address this problem of parameter uncertainty, a Monte Carlo 

technique was employed and 100 most efficient model parameters sets that results in NSE 

values higher than the obtained from the Genoud, minus a threshold are selected.  These 100 
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parameters sets are used with HBV-EC to provide a range of model results to helps to 

understand the model sensitivity to the parameters uncertainty. 

Forest change 

A change detection modeling technique suggested by Seibert and McDonnel (2010) and Seibert 

et al. (2010) is used to assess the impacts of forest change on the streamflow.  Seibert et al. 

(2010) used similar hydrological model to quantify the impacts on streamflow after forest 

removal from a watershed due to wildfire.  We remove forest from the watershed and run 

HBV-EC for reference and future periods to understand how removal of forest in reference and 

future periods would impact the streamflow.     

2.3 Results 

2.3.1 Estimates of future monthly climate means 

Relative changes in watershed averaged monthly climate means observed in GCM outputs for 

nine different future scenarios are in Table 2.1.  GCM projections showed an increase in 

precipitation during winter (December, January and February) and decrease in precipitation 

during summer (June, July and August) for our watershed.  Projections for spring (March, April 

and May) and fall (September, October and November) were mixed.  There was consistent 

increase in mean temperature for all seasons of the year (Table 2.1).  
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Table 2.1  Relative changes in watershed averaged mean monthly GCM projections of precipitation and air temperature for A1B, A2 and B1 scenarios for 2020s, 2050s and 

2080s time periods. 

Time 

period 

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Annual 

mean 

 

Percentage change in mean monthly precipitation, ΔP 

2011-

2040 

("2020s") 

A1B 2.6 4.1 -4.3 3.9 -7.3 -5.0 -2.4 -2.8 3.2 -2.7 -7.9 3.6 -1.6 -1.708 

A2 3.1 3.8 -4.5 3.5 -7.3 -5.2 -2.3 -3.1 2.7 -2.6 -7.7 3.6 -1.6 

B1 2.3 3.6 -4.2 3.9 -7.8 -5.6 -2.6 -3.6 2.8 -3.5 -7.7 3.4 -1.9 

                                

2041-

2070 

("2050s") 

A1B 4.2 4.7 -2.9 4.9 -6.6 -4.6 -1.6 -1.8 4.3 -1.9 -6.7 4.8 -0.6 -0.980 

A2 3.7 4.4 -3.0 5.0 -6.1 -4.5 -1.3 -1.5 4.3 -1.9 -7.0 4.5 -0.6 

B1 3.7 2.6 -3.6 3.8 -7.9 -5.2 -2.0 -3.2 3.0 -3.4 -7.5 3.1 -1.7 

                                

2071-

2000 

("2080s") 

A1B 5.3 4.4 -1.9 4.6 -6.0 -3.8 -0.6 -1.0 4.9 -1.3 -6.4 6.3 0.04 0.002 

A2 6.7 6.8 -1.2 6.1 -5.0 -3.1 0.5 -0.1 6.1 -0.6 -6.0 6.8 1.1 

B1 3.9 4.5 -2.7 4.5 -6.9 -5.2 -2.0 -2.5 3.5 -3.2 -7.0 4.2 -1.1 

                                

Change in mean monthly air Temperature, (ΔTmax+ ΔTmin )/2   

2011-

2040 

("2020s") 

A1b 1.6 3.1 0.9 0.7 1.0 1.6 1.5 1.7 1.5 0.8 0.9 0.7 1.3 1.4 

A2 2.0 2.8 0.6 0.4 1.2 1.7 1.8 1.8 1.1 0.9 1.0 0.8 1.3 

B1 1.7 3.6 1.5 1.0 1.1 1.3 1.6 1.3 1.2 1.2 1.1 1.1 1.5 

                                

2041-

2070 

("2050s") 

A1B 3.1 3.6 2.2 1.2 1.7 2.0 2.5 2.7 2.2 1.7 2.0 1.8 2.2 2.1 

A2 2.6 3.4 1.8 1.6 2.2 2.0 2.4 3.0 2.6 1.9 1.6 1.6 2.2 

B1 3.0 2.7 2.0 0.9 0.9 2.4 2.5 1.9 1.9 1.3 1.4 0.8 1.8 

                                

2071-

2000 

("2080s") 

A1B 3.8 3.2 2.9 1.0 2.4 3.1 3.7 3.5 2.8 2.1 2.4 3.0 2.8 3.0 

A2 5.2 5.3 3.3 2.2 3.4 3.7 4.5 4.6 4.0 2.7 2.8 3.6 3.8 

B1 3.8 4.3 3.0 1.6 2.1 2.1 2.4 2.7 1.8 1.3 1.8 1.8 2.4 
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Future monthly climate means (precipitation, Tmax and Tmin) at the Coleman climate station for 

the nine scenarios along with the reference period observed climate aggregated to monthly 

scale are presented in Figure 2.2.  Disaggregation of these provides climate inputs to the 

hydrological model to simulate reference and future periods streamflows.  Figure 2.2 shows 

higher precipitation during winter and lower precipitation during summer for future periods in 

comparison to reference period.  However, the increase or decrease in future periods 

precipitation compared to reference period was less than 10% for any seasons.  Tmax and Tmin 

for future periods are higher for all seasons.  
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2.3.2 Disaggregation 

LARS-WG model performance was evaluated by comparing the observed and LARS-WG 

generated means and variances for monthly precipitation by using t- and f-test, respectively 

and means of daily Tmax and Tmin by using the t-test (Table 2).  LARS-WG reproduced hundred 

percent (for all twelve months) monthly means for precipitation well giving p-values higher 

Figure 2.2  Reference (observed) period daily climates aggregated to monthly scale and nine sets of future monthly climate 

means (precipitation, Tmax and Tmin) estimated for climate station, Coleman. 
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than 0.05 suggesting not significant difference in means at the 95% confidence level as shown 

in Table 2.2.  However, only 75% of monthly variances for precipitation were reproduced by the 

model (4 out of 12 p-values for the f-test are less than 0.05).  LARS-WG produced mixed results 

for Tmin and Tmax.  The t-tests for the Tmin  were significant for 4 months out of 12 (4 out of 12 p-

values for the t-test are less than 0.05) and the t-tests for the Tmax were significant for 2 months 

out of 12 months (2 out of 12 p-values for the t-test are less than 0.05).  Comparison of LARS-

WG simulated mean monthly precipitation and monthly mean values of daily Tmax and Tmin with 

observed climates are presented in the Figure 2.3. 

 

Figure 2.3  Observed and LARS-WG generated monthly values of precipitation, Tmax and Tmin. 
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Table 2.2  Comparison of monthly statistics of daily precipitation, Tmax and Tmin observed at Coleman station during the period from 1965 to 1997 with synthetic data 

generated by LARS-WG.  P-values calculated by the t-test and F-test for the monthly means and variances are shown.  A probability of 0.05 or lower indicates a departure 

from the observations that is significant at the 5% level. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation             

Observed mean 45.10 39.13 34.98 39.03 63.24 67.58 52.56 50.98 44.42 38.19 48.70 45.91 

Observed standard deviation 31.80 31.59 21.59 17.63 29.39 26.19 40.22 39.99 26.67 24.34 33.15 30.23 

Generated mean 41.36 33.85 35.42 39.34 57.96 71.61 60.82 52.11 41.01 39.62 56.99 38.60 

Generated standard 

deviation 21.67 17.00 20.24 17.64 25.49 25.81 23.65 20.02 22.19 21.19 32.38 22.44 

P-values for T-test 0.583 0.406 0.933 0.943 0.442 0.535 0.319 0.887 0.577 0.803 0.315 0.276 

P-values for F-test 0.036 0.001 0.720 0.995 0.431 0.936 0.03 0.03 0.309 0.445 0.896 0.102 

Tmin             

Observed mean -13.05 -10.09 -6.87 -2.63 1.35 4.95 6.61 5.86 2.46 -0.46 -6.39 -11.15 

Observed standard deviation 4.76 4.06 2.93 1.69 0.95 1.16 1.02 1.20 1.38 1.58 3.16 4.32 

Generated mean -10.41 -9.10 -5.21 -2.51 1.32 4.93 6.15 5.33 2.07 -1.13 -5.30 -9.67 

Generated standard 

deviation 1.82 1.72 1.32 0.83 0.65 0.71 0.49 0.63 0.97 1.21 1.44 1.73 

P-values for T-test 0.005 0.208 0.005 0.734 0.914 0.944 0.024 0.031 0.188 0.062 0.080 0.078 

Tmax             

Observed mean -3.51 -0.02 3.55 8.91 14.22 18.38 22.37 22.36 16.90 10.41 1.66 -2.83 

Observed standard deviation 4.07 3.14 2.85 2.21 1.85 1.84 2.14 2.55 3.43 2.23 2.91 3.34 

Generated mean -1.25 0.64 4.64 9.21 14.24 18.30 22.12 21.84 16.85 9.66 2.33 -1.86 

Generated standard 

deviation 1.38 1.13 0.83 1.09 1.22 0.93 1.08 1.04 1.38 1.30 1.10 1.19 

P-values for T-test 0.006 0.263 0.052 0.499 0.957 0.826 0.558 0.282 0.935 0.106 0.227 0.128 
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2.3.3 HBV-EC Calibration 

Figure 2.4 compares the observed daily streamflow at watershed outlet, Crowsnest at Frank 

with HBV-EC simulated values for the calibration period 1965–1997.  Both peak and low flows 

were simulated reasonably well except few higher peaks were underestimated by the model 

(Figure 2.4).  NSE of 0.82 was obtained during this calibration period.  Differences in mean 

monthly streamflow between the observed and simulated values range from -15 to 50%.  The 

large difference observed was during the month of February.  Though the difference was large 

in percentage, in terms of magnitude the difference was very small, about 5 mm.  Maximum of 

12 mm difference was observed in the month of June.  Differences between the observed and 

simulated annual flows range from -25% to 40%.  The large differences (>|15%|) observed were 

during the years 1968, 1969, 1973, 1974,1988, 1991 and 1994.  In other years the differences 

were less than |15%|.  While there were discrepancies in the simulated versus observed mean 

monthly and annual flows, the negative and positive errors offset each other giving only 6% 

(about 25 mm) difference in mean annual flow between the observed and simulated values.
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Figure 2.4  Observed and HBV-EC simulated daily, monthly and annual streamflows during the calibration period from 1965 

to 1997.  HBV-EC is driven by the daily climates observed at Coleman station. 
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2.3.4 HBV-EC Application 

Figure 2.5 compares the model simulated streamflow (daily, monthly and annual) with the 

observed streamflow values at study watershed outlet, Crowsnest at Frank.  Input to the HBV-

EC in this case is LARS-WG generated daily realizations.  Daily, monthly and annual comparisons 

(Figure 2.5) show that the streamflow simulated are realistic and close to the observed values 

as in Figure 2.4.  However, the NSE was not that great.  This is somewhat expected given the 

generated weather data captures the stats but not the actual amounts. 
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Figure 2.5  Same as figure 4, but in this case HBV-EC is driven by the LARS-WG generated daily climates.
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Figure 2.6 compares the HBV-EC simulated streamflows at watershed outlet, Crowsnest at 

Frank for reference and nine future periods.  Mean monthly hydrographs of all future 

simulations (Figure 2.6) showed early initiation of peaks resulting in the seasonal shift, a shift 

toward higher spring (March, April) flows and a corresponding decrease in summer (June and 

July) flows associated with the shift in the spring flows compared to reference periods 

hydrographs.  Future simulations also showed an increase in the winter low flows.  Winter low 

flows increased up to 200% (9.3 mm) in February while summer high flows decreased up to 

63% (31.2 mm) in June in A2 scenario in 2080s time period.  Fall (September, October and 

November) flows were affected less and remained almost same for all future periods.  Despite 

the variations in the mean monthly flows, mean annual flows for the reference and future 

periods were quite similar (Figure 2.6).  Maximum increase in mean annual flow was found to 

be projected about 9% in 2080s for A2 scenario while maximum decrease was found to be 

projected about 6% in 2050s for A1B scenario.
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Figure 2.6  HBV-EC simulated mean monthly and mean annual streamflows for the reference and nine future periods (for 

three different scenarios: A1B, A2 and B1and for three different time periods: 2020s, 2050s and 2080s) at the watershed 

outlet at Crowsnest at Frank. 

Reference and future periods mean monthly snow water equivalent (SWE) and mean monthly 

evapotranspiration for the study watershed are presented in Figure 2.7.  SWE values decreased 

in all future simulations.  Evapotranspiration increased in spring and decreased in summer.  

Despite increase in temperature throughout the year, decrease in evapotranspiration during 

the summer indicates water deficit and unavailable for evapotranspiration during the summer.

A1B A2 B1
0

2
0

4
0

6
0

8
0

1
0
0

Jan Mar May Jul Sep Nov

Reference
2020s

2050s
2080s

M
e

a
n

 m
o

n
th

ly
 s

tr
e

a
m

fl
o

w
 (

m
m

)

0
2

0
4
0

6
0

8
0

1
0
0

Jan Mar May Jul Sep Nov

Reference
2020s

2050s
2080s

0
2

0
4
0

6
0

8
0

1
0
0

Jan Mar May Jul Sep Nov

Reference
2020s

2050s
2080s

0
1
0
0

2
0
0

3
0

0
4

0
0

M
e

a
n

 a
n

n
u

a
l 
s
tr

e
a

m
fl
o

w
 (

m
m

)

Ref. 2020s 2050s 2080s

0
1
0
0

2
0
0

3
0

0
4

0
0

Ref. 2020s 2050s 2080s

0
1
0
0

2
0
0

3
0

0
4

0
0

Ref. 2020s 2050s 2080s



44 

 

Figure 2.7  HBV-EC simulated watershed averaged mean monthly snow water equivalent (SWE) and mean monthly 

evapotranspiration for the reference and future periods. 

2.3.5 Parameter Uncertainty 

Relative changes in mean monthly streamflows in different future periods compared to 

reference period were calculated from the HBV-EC ensemble simulations (Figure 2.8).  

Ensemble spread was found to be higher in spring and summer than in winter and fall in all 

future scenarios indicating higher parameter uncertainty impacts on spring and summer flows 

than on winter and fall flow.  Single simulation showed maximum of about 31.2 mm of 

streamflow reduction during summer while the ensemble showed up to 80 mm reduction in 

streamflow in summer.  Ensemble mean showed about 46 mm reduction in summer flow which 

is about 1.5 times higher than that the single simulation predicted.
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Figure 2.8  Ensemble of relative changes in mean monthly streamflows in different future periods compared to reference 

period streamflow, and mean of the ensemble. 
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climate change (Figure 2.9b), and due to combined forest removal and climate change (Figure 

2.9c).  Mean values of these ensembles are also compared in Figure 2.9d.  Removal of forest 

from the watershed increased streamflow in early spring, late summer and early fall, and 

reduced streamflow in late spring and early summer.  The mean ensemble (Figure 2.9d) shows 

a higher increase in winter flow due to the combined forest removal and climate change impact 

compared to individual impact produced by forest removal or climate change.  However, the 

combined impact on the summer flow was less compared to the climate change impact, 

suggesting that the forest had a roll in the summer evapotranspiration and streamflow. 

 

Figure 2.9  Ensemble and mean values of relative changes in mean monthly streamflows: a) due to forest removal b) due to 

climate change in 2080s in A2 scenario and c) due to combined forest removal and climate change in 2080s in A2 scenario.  

Figure 9d shows the ensemble mean to compare the relative changes in mean monthly streamflows due to forest removal, 

due to climate change in 2080s in A2 scenario and due to combined forest removal and climate change in 2080s in A2 

scenario.    
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2.4 Discussion 

This study uses GCM outputs downscaled using ClimateWNA model with two other models: 

LARS-WG and HBV-EC to assess the impacts of climate and forest changes on streamflow.  

These types of studies inherently have large sources of uncertainty in predictions and are used 

to inform trends rather provide predictive results. Inclusion of uncertainty estimates in GCM 

simulations, ClimateWNA downscaling or and LARS- WG disaggregation may provide the robust 

assessment of the impacts of climate change on water resource systems.  However, analyses of 

uncertainty in the climate simulations and downscaling are beyond the scope of this study.  

Uncertainty in the LARS-WG disaggregation and hydrological modeling are analyzed and partly 

taken into account. 

LARS-WG reproduced monthly means and variances for the precipitation very well; it 

demonstrated relatively poor performance, especially, in reproducing the monthly variances of 

Tmax and Tmin.  Mixed results were obtained in reproducing means of Tmax and Tmin.  The possible 

source of error could be the use of many pre-set values in the model.  While estimating an 

average daily standard deviation for Tmax and Tmin, LARS-WG normalises the temperature 

residuals using constant auto-correlations and cross-correlations between the temperature 

residuals through the year.  Those constant values are site specific and might be different for 

our climate.  Semenov and Brooks (1999) recommend site specific testing and validation of 

model before the generated data are used in an application for a sensitive application, where 

more accuracy is required for each variable, for example, in a study of extreme weather event.  

For this study LARS-WG can be implemented without any changes in the model.  Although the 

model did not reproduce the variances very well, it reproduced the average behaviour of 

observed data and so the performance for mean precipitation and temperature was good. 
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The hydrological model used in this study is a conceptual model and does not represent many 

physical processes.  However, the choice was governed by the availability of data.  Observed 

climate and other data available for model input and verification were limited.  Although there 

are some climate stations at higher elevations, their records were short and seasonal.  More 

detailed models may represent the physical processes thoroughly, but use of these models 

under such conditions may cause problems of over-parameterization, parameter estimation 

and validation limitations.   

HBV-EC reasonably captured the reference period daily streamflow with NSE 0.82 as well as 

monthly and annual flow very well.  Streamflow simulated using LARS-WG generated climates 

also matched the daily, monthly and annual observed streamflow reasonably, though the NSE 

value was low and model error was large.  However, the error that LARS-WG produced is 

inherent and would be consistent in both reference and future period simulations and would 

not affect much in the evaluation of climate and forest change impacts. 

Hydrological model in this study was calibrated against the streamflow measurements only.  It 

would have been better if we were able to calibrate the model against other measurements, 

i.e., SWE, soil moisture content or evapotranspiration before the model being used to simulate 

future streamflows.  But the limited data did not afford such luxury to validate model against 

other measurements.  

Comparison of HBV-EC simulated flows for the reference and future periods in climate change 

studies suggest an amplification of the seasonal cycle with increased winter precipitation 

leading to a rise in winter (DJF) stream flow.  Increase in streamflow during the winter could 
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have been caused by the partly replacement of snowfall by rainfall due to the increased in 

temperature during the season when potential evapotranspiration rates are low (Forbes et al., 

2011).  Combination of increased temperature and decreased precipitation resulted in 

reduction in May and summer (JJA) streamflow.  Previous climate change studies carried out in 

similar regions in Canada (e.g. Dibike and Coulibaly, 2005; Forbes et al., 2011; Kienzle et al., 

2012) have also found streamflows increased in winter and spring, and decreased in summer.  

These changes (increased or decreased in streamflow) we found were relatively higher for A2 

climate scenario, which is reflective of largest changes to climate when compared to other two 

scenarios.   

The model parameter uncertainty analysis showed streamflow predictions to vary considerably.  

This higher spread observed in ensemble simulations in summer indicates a higher risk of lower 

summer flows than was predicted by the single simulation.  Combined climate and forest 

change impact compounded the effect increasing winter flow; however, it did not reduce the 

summer flow much.  The higher winter or early spring flow in both reference and future periods 

observed after removal of forest may be caused by the quicker snowmelt when forest was 

removed.  Usually the removal of forest results in increased summer flow due to the less 

evapotranspiration during the summer or fall.  But in our case the model doesn’t distinguish the 

difference in evapotranspiration based on the presence or absence of the forest, thus the less 

reduction in the simulation of summer flow when forest was removed is possibility due to the 

higher soil recharge during the winter and increased soil moisture release during the summer. 
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2.5 Conclusion 

A watershed in the eastern slopes of the Southern Alberta Rocky Mountains was modeled to 

investigate the potential impacts of climate and forest changes on its hydrology using a simple 

conceptual hydrological model, HBV-EC.  Monthly climate data downscaled to 1x1 km grids are 

disaggregated to daily realizations using stochastic weather generator, LARS-WG.  These 

realizations provided the inputs to the HBV-EC to simulate reference and future scenarios 

streamflows that are compared to assess the climate and forest change impacts.  Climate 

change impacts are mainly observed in the seasonality of streamflow: higher winter flows and 

lower summer flows.  These are mainly caused by the increase in temperature as there was not 

much difference in precipitation between reference and future periods.  Summer flows were 

found to be more vulnerable and the consequences are less availability of summer water in the 

river which is already stressed due to higher demand than the supply.  The use of an ensemble 

of parameter sets in this study allowed us to examine the impact of parameter uncertainty in 

the streamflow simulations.  However, uncertainties exist in model simulations of many 

hydrologic components (i.e., soil moisture, base flow, snow accumulation and ablation, 

evapotranspiration etc.) that are not validated in this study.  Poor representations of these may 

largely affect the model results in the simulations of future streamflows for climate change 

studies. 
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