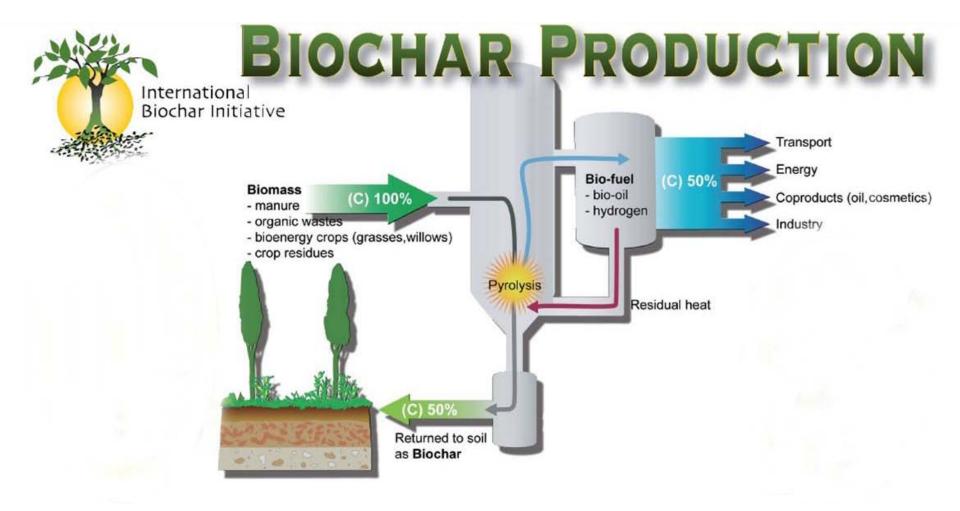


#### Biochar – a potential carbon sequestration technology in Alberta

#### Dr. Anthony Anyia Manager, Bioresource Technologies Adjunct Professor, University of Alberta




Alberta Forest Growth Organization, Edmonton, October 21, 2010

#### What is Biochar?

Biochar is the agricultural and environmental use of Char or Charcoal

It is a Carbon-rich solid produced by lowtemperature (400 and 500° C) pyrolysis of biomass under complete or partial exclusion of oxygen.







Freedom To Create. Spirit To Achieve.

#### **Pyrolysis Reaction Conditions**

|                 | Reaction conditions               | Liquid | Char | Gas |
|-----------------|-----------------------------------|--------|------|-----|
| Slow pyrolysis  | Low temperature (>400°C), very    | 30%    | 35%  | 35% |
| (Carbonization) | long residence time (hours)       |        |      |     |
| Fast pyrolysis  | Moderate temperature (~500°C),    | 75%    | 12%  | 13% |
|                 | short residence time (<2 seconds) |        |      |     |
| Gasification    | High temperature, long residence  | 5%     | 10%  | 85% |
|                 | times (hours)                     |        |      |     |

Source: Bridgwater, A.V. "Thermal Conversion of Biomass and Waste:



#### **AITF Pyrolyzers**



- AITF is currently the only Biochar facility in the province
- Larger capacity is needed

#### < 20 kg/batch

# Why the renewed interest in **Biochar**?

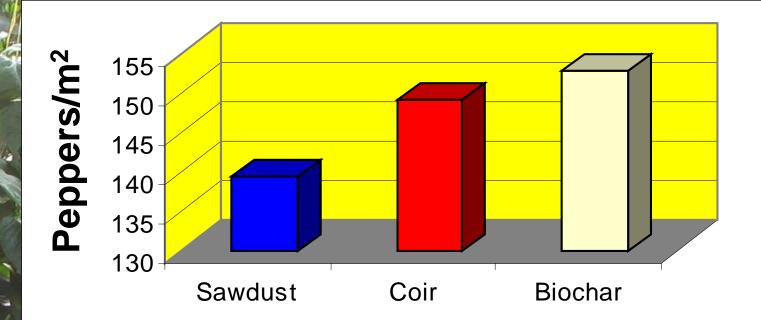


#### **Biochar for soils**

- Boosts food production and preserves cropland diversity
- High Cation Exchange Capacity (CEC)
- Reduces nutrient leaching (water quality impacts)
- Enhances water retention
- Reduces chemical fertilizer requirements



#### **Biochar enhances soil and crop yield**





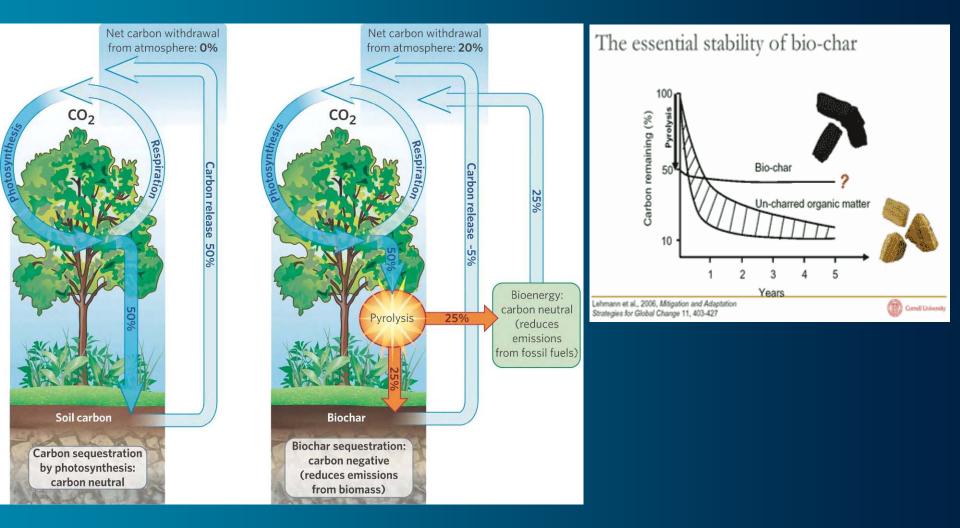

20% - < 200% yield increase depending on soil type and climate

Slides courtesy of IBI

## **Biochar in Hydroponics**



# Biochar


# Sawdust

Courtesy - Dr Nick Savidov, ARD

## **Biochar and Climate Change**

- Carbon in biochar resists degradation and can stay sequestered for long periods
- Biochar can reduce methane and NO<sub>x</sub> emissions from soils
- Co-products (Bio-oil and Syngas) are potentially valuable sources of green materials
- Biochar is "carbon negative" in contrast to Bio-fuel, which is carbon neutral

#### **Biochar is a powerfully simple tool to Combat Climate Change**



#### **Biochar Initiatives**

International Biochar Initiative (IBI)

Recognition of biochar as a tool to fight global warming will be driven by:

- 1.the post-2012 United Nations Framework Convention on Climate Change (UNFCCC)
- 2.energy and climate legislation and policies being developed and adopted in nations around the world



#### **Biochar Initiatives**

#### **UK Biochar Research Centre**

Mission to "research on the role of biochar as a carbon storage and sustainable energy technology, and to provide an understanding of the agronomic, environmental and socio-economic impacts of biochar."

#### **New Zealand Biochar Research Centre**

Aims "to advance the understanding of biochar for mitigating global climate change and to enable its use in New Zealand, particularly by agricultural and forestry sectors."

#### **US Biochar Initiative**

"A not-for-profit organization promoting the sustainable production and use of biochar through research, policy, technology and doing it!"

# Biochar: Gaps in Knowledge Potential Negatives Other issues



#### **Major Gaps**

**Quality and Standards definition:** Not all biochar is created equal - how do we separate good biochar from bad biochar?

Climate and soil type affects response to biochar: Large scale agronomic field trials needed across climatic zones and soil types

**Biochar application rate:** Soil type specific application rate lacking

Fate of biochar in soils: Stability of biochar in different soils and climates?

#### **Potential negatives**

**Contaminants (e.g. PAHs, heavy metals, dioxins)** - Careful selection of feedstock and processing conditions

**Removal of crop residues** for biochar production can forego incorporation of the crop residue into the soil.

Health (e.g. dust exposure) and fire hazards – biochar is flamable -, must be handled with care

**Poor biochar production practices** - could lead to greater GHG emissions and pollution.

#### **Biochar in Alberta**

#### Alberta's 2008 Climate Change Strategy Responsibility / Leadership / Action





## Alberta's 2008 Climate Change Strategy

#### Committing to results

By 2010 - - Reduce emissions by 20 megatonnes

**RESULT** -- Meet intensity target established in 2002 plan

- By 2020 - Reduce emissions by 50 megatonnes
- **RESULT** -- Stabilize greenhouse gas emissions and begin reductions

#### By 2050 - - Reduce emissions by 200 megatonnes

**RESULT** -- Emissions reduced by 50 per cent below business as usual level and 14 per cent below 2005 levels while maintaining economic growth

#### Biochar can help to achieve these targets



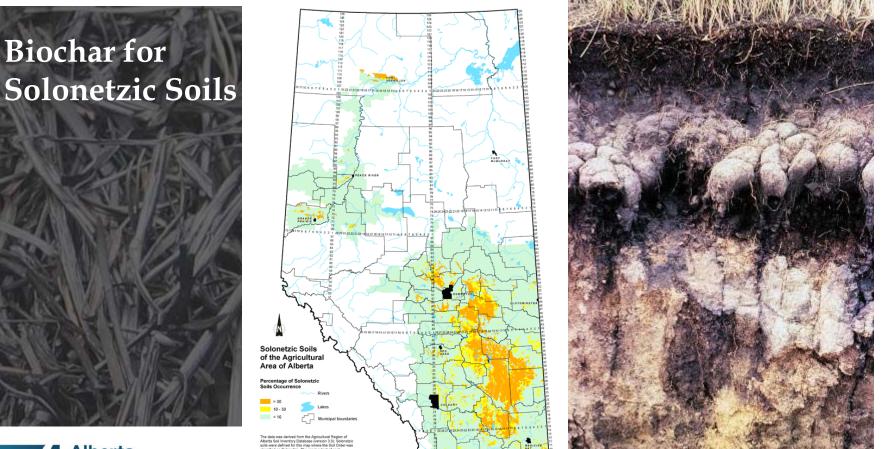
We estimate the following as achievable targets\*\* with Biochar deployment in Alberta:

2010-15 – Development phase -- will achieve 5 Mt GHG reductions by applying ~1.4 Mt of biochar to 280 thousand ha of farmland annually

2020 – Scale-up phase -- will achieve 10 Mt GHG reductions by applying ~2.8 Mt of biochar to 560 thousand ha of farmland annually

2050 and beyond – following full scale commercial adoption, biochar will reduce projected GHG emissions by 30 Mt annually (or 15% of the target set in the 2008 GoA plan) by applying ~8.3Mt of biochar over 1.6 million ha each year

\*\*Based on AITF internal estimates


## **Feedstock for Biochar in Alberta**

- Crop residues
- Forest and mills residues
- Municipal solid waste
- purpose-grown biomass crops and



Based on these available feedstock for the biochar production, the CO2 sequestration potential in Alberta is significant

# Biochar for soil remediation and carbon storage – *Solonetzic soils*





4-5 million hectares of solonetzic soils in Alberta (~ 20% of the arable land base)

#### Ameliorative potential of AITF biochar on solonetzic soils in Alberta

Simulating a subsoiler action with a trencher (4 in. wide 2 ft. deep)

#### Filling trenches with a mix of Bnt material with AITF biochar



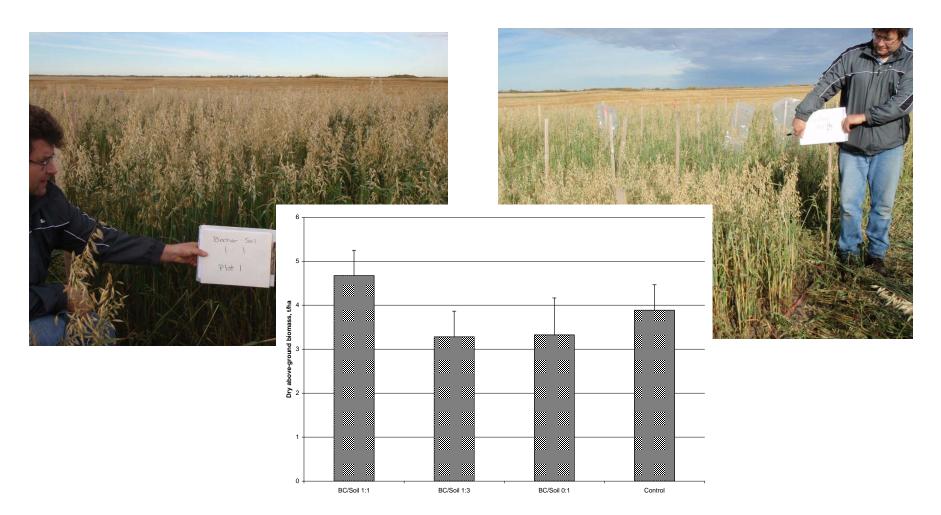


#### Ameliorative potential of AITF biochar on solonetzic soils in Alberta

**Biochar incorporated at 60 tons/ha** 



**Control (business as usual)** 




Biochar treatment enhanced oats early vigour despite the unusually wet season in 2010.

#### Ameliorative potential of AITF biochar on solonetzic soils in Alberta

**Biochar incorporated at 60 tons/ha** 

**Control (business as usual)** 



# Biochar for soil remediation and carbon storage – *Land reclamation*

Biochar for Well site reclamation and remediation





Over 10,000 per year wells (~ 1 Ha/well) have been drilled in Alberta in the past 15 years. These together create an extremely large cumulative area requiring reclamation.

#### **Biochar - Other potential areas of use** *in Alberta*

- Peatmoss replacement: Engineering and blending of biochar as an alternative to peatmoss as a growing medium in horticulture need to investigated
- Hydroponics use: On-going trials in Alberta?
- Landscaping: Potential for this needs to be investigated
- Green-roofs: On-going trials in Alberta?
- **Colf-turf:** On-going trials in Alberta?



#### Biochar – Other issues to consider in Alberta

- Production technology scale up, design of mobile, modular pyrolysers for on-farm biochar production.
- Feedstock delivery and Biochar distribution mobile biochar carbonizers essential to minimize transportation of biomass and biochar
- Biochar application modification of farm equipment for soil application of biochar as needed
- Economics cost benefits analysis of biochar use
- Government Policies regulations, guidelines and possible incentives are needed to develop and deploy Biochar in AB

# Thank you!



