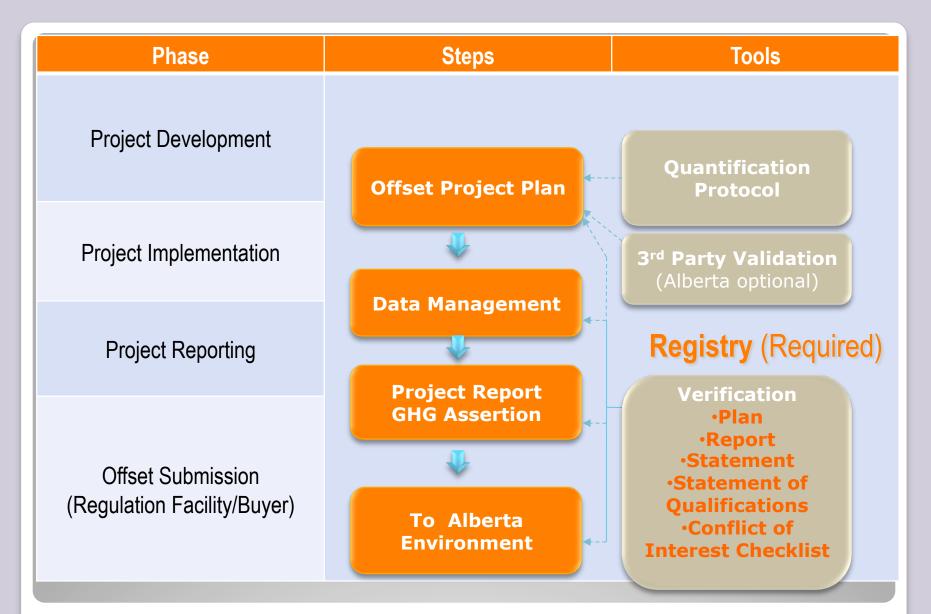
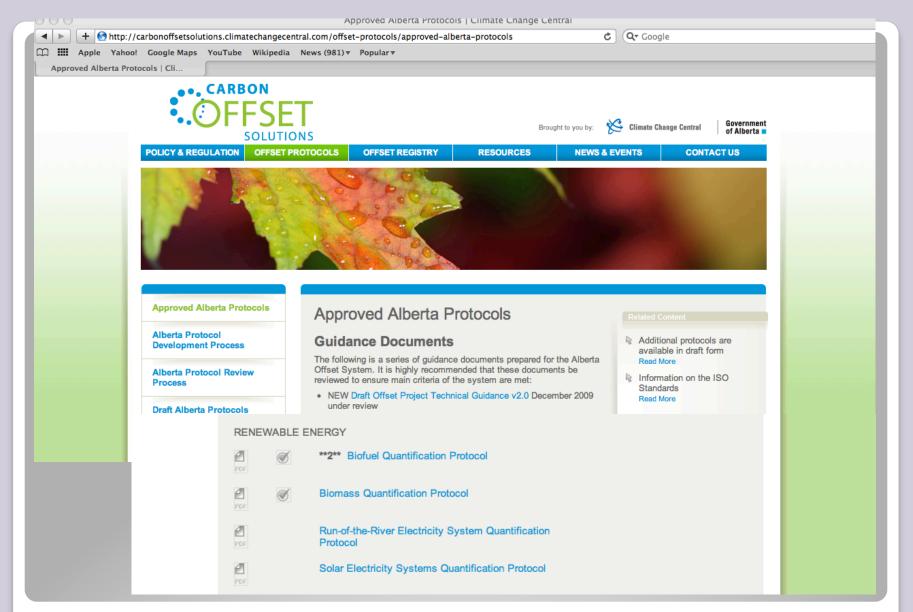
Biofuels, Biomass and Biochar: The 3B's

Karen Haugen-Kozyra, M.Sc. P.Ag. Principal, KHK Consulting

> Keith Driver, President, Leading Carbon


Oct 21, 2010 Carbon Trading – Current and Future Opportunities Session AFGO Forests and Energy Conference

- From activities outside the SGER caps:
 Un-regulated Facilities < 100,000 tonne CO₂e threshold
- Actions after Jan 1, 2002
- Real, quantifiable, measureable reductions:
 Need a protocol and evidence/documentation
- Have clearly established ownership;
- Not required by law; beyond business as usual – i.e. Additional
- Be counted once for compliance purposes;
 Registered, serialized tonnes


| Making Your Carbon Count

- Be verified by a qualified third party;
- Meet requirements stated in Ministerial guidelines

Alberta Offset Criteria

Alberta's Carbon Offset Path

Protocols -Current Opportunity

Project Condition

- Implementation of an aerobic biomass combustion facility
 - Utilization of wood waste for thermal energy and electricity
 - Diversion of wood waste from landfill
- Baseline Condition
 - Equivalent energy production
 - Thermal energy production natural gas, coal
 - Electricity production
 - Disposal of material in landfill

Functional Equivalence – baseline and project

- Electricity generation
- Thermal energy output
- Landfill of equivalent material

Emission Reduction Mechanisms

- Offset fossil fuel production, processing and usage
 - Thermal energy production
- Offset non-renewable electricity production
- Diversion of organic materials from landfill

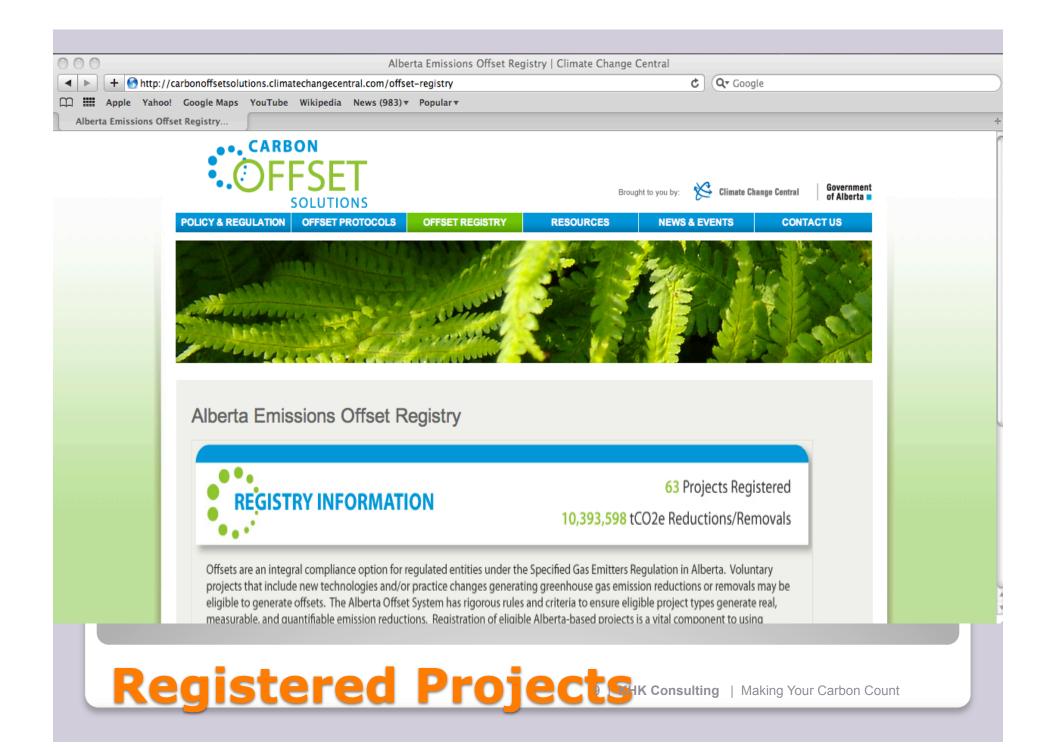
Avoid methane production

Biogenic CO₂ emissions

Applicability criteria

- Fit with project and baseline scopes
- Biomass claimed as diverted biomass
 - Would have undergone anaerobic decomposition
- Based on actual measurement of inputs and outputs

Flexibility mechanisms


- Functional equivalence of transportation not assured
- Grouping sources and sinks to match data management
- Modification of measurement and data management

Emission Reduction = Emissions Baseline - Emissions Project

Emissions _{Baseline} = Emissions _{Decomp Biomass} + Emissions _{Electricity} + Emissions _{Thermal Heat}

Emissions Project = Emissions Facility Operation + Emissions Combustion of Biomass

Data Capture
 Mass of biomass diverted / combusted
 Volume of fossil fuels consumed
 Thermal and electrical energy produced
 Landfill characteristics

Carbon Offset Solutions A	-EOK		_
Project Name: Blue Ridge Lumber TFH Biomass Burner Project	Send Message	Help Contact	1
Project Status: Registered		Logout	
+ Project Developer: Blue Ridge Lumber Inc. Project Location: Central, South and North West Vintage: 2007-2009			
Project Name: Canfor Grande Prairie Sawmill Biomass Energy Project	ct Send Message		
Project Status: Registered			
 Project Developer: Canadian Forest Product Ltd. Project Location: North Central Vintage: 2005-2008 			
Project Name: Legal Alfalfa Biomass Burner Project	Send Message		
Project Status: Created			
+ Project Developer: Utility Source Inc. Project Location: North Central Vintage:			
Project Name: Sundance Biomass Energy Generation Project	Send Message		
Project Status: Registered			
+ Project Developer: Blue Source Canada ULC Project Location: North West Vintage: 2005-2009			
Project Name: Sundre Forest Product TFH Biomass Burner Project	Send Message		
Project Status: Registered			
 Project Developer: Sundre Forest Products Inc. Project Location: Central, South and North West Vintage: 2008-2009 			
Project Name: Verdant Energy Limited - Dapp Power Electric General Facility	tion Send Message		
Project Status: Registered			

Facility	Project Type	Offsets YTD (tonnes)	Lifetime (tonnes)
Blue Ridge THF Biomass Burner	Displaces Natural Gas Use	48, 572	121,600 (to 2015)
Canfor GP Sawmill Biomass	CHP plant Displaces gas/ electricity	115,344	115,344 (to 2012)
Legal Alfalfa THF Biomass Burner	Diversion of waste from landfill/Gas	- (expect 2200 per yr)	17616 (to 2011)
Sundance Biomass Energy	Displaces Natural Gas	65,407	120,000 (to 2013)
Sundre TFH Biomass Burner	Displaces Natural Gas	27,219	117,600 (to 2015)
Verdant Energy- Dapp Power Electric	Electricity Generation	442,473	2,500,000 (to 2013)

Project Summary 11 | KHK Consulting | Making Your Carbon Count

Theoretical Potential: Electricity – 12 Mt/yr

Residue Source	PJ	GWh	tCO ₂ e/MWh ^a	Potential GHG Reductions (Mt CO ₂ e yr ⁻¹)
Forest Residues ^b	14	3889	0.65	2.3
Mill Residues ^b	3.2	889	0.65	0.5
Agriculture Surplus Straw ^c	51	16388	0.65	9.7

b – Based on AFPA harvest statistics and forest company harvest efficiency data

c –Estimates based on Levelton and ST² Consultant's Report - *Bioenergy Opportunities for Alberta: Strategic Feasibility Study*, January 15, 2006, commissioned by the Alberta government.

- Forestry Residue Assumptions:
- Potential (GJ) = Residues (m³) X 0.4 (conversion to Bone Dry Tonnes) X 20 GJ/BDT
- Potential (PJ) = Potential (GJ)/1000000
- Current Projects 0.175 Mt CO₂e/yr
- (5 more planned biomass plants for the province)

Potential for the Proving Calor Your Carbon Count

13 | **KHK Consulting** | Making Your Carbon Count

Project Condition

- Implementation of Biofuel Production Facility
 - Range of processes

 (Pyrolysis, gasification, fermentation, distillation, etc.)
 - Range of fuel outputs (Biodiesel, ethanol, charcoal, syngas, etc.)
 - Thermal and electricity energy
 - Landfill diversion

Baseline Condition

- Fossil fuel production, processing and usage
 - Fuel Usage
 - Thermal energy
 - Electricity production
- Landfill of similar amount of material

Functional Equivalence

- Energy potential of outputs
- Electricity generation
- Landfill of equivalent material

Emission Reduction Mechanisms

- Offset fossil fuel production, processing and usage
 - Biogenic nature of biofuels
 - Thermal energy production
- Offset non-renewable electricity production
- Diversion of organic materials from landfill
 - Avoid methane production
- Reductions occur downstream from the plant (tailpipe combustion, electricity displacement, etc)

Applicability criteria

- Fit with project and baseline scope
- Process emissions are not materia
- Assumption that all is combusted somewhere downstream

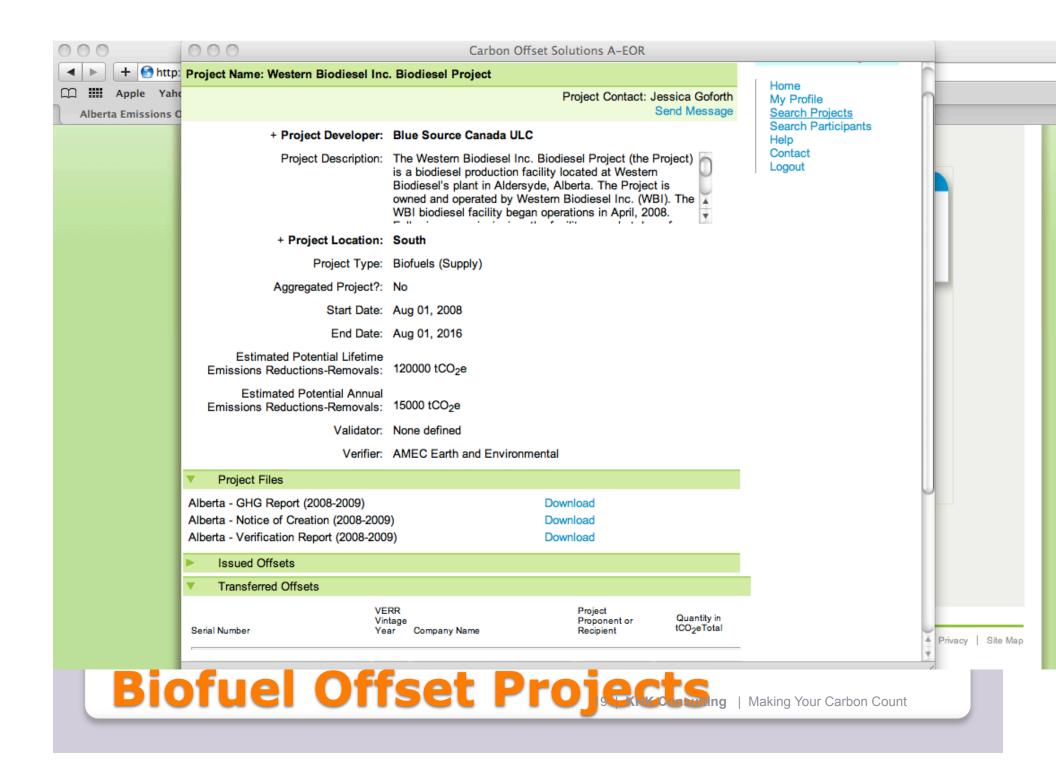
Flexibility mechanisms

- WHR protocol may be applied in conjunction
- Include supplementary heat production
- Transportation emissions may be included
- Accounting for diversion of waste from landfill

Emission Reduction = Emissions Baseline - Emissions Project

Emissions Baseline = Emissions Fuel Extraction / Processing + Emissions Use of Fuel

- + Emissions Electricity Generation + Emissions Gen Heat and Power
- + Emissions Decomposition, Collection and Destruction


Emissions Project = Emissions Fuel Extraction / Processing + Emissions Facility Operation

- + Emissions Use of Biofuel
- + Emissions Distribute Heat and Power + Emissions Gen Heat and Power
- + Emissions Transfer / Conversion

Data Capture

- Volume of biofuels produced / consumed
- Volume of fossil fuels consumed / offset
- Thermal and electrical energy produced
- Landfilling characteristics

Biofuel Protocol – September 2007

- AB Renewable Fuel Standard Apr 1/11
 - EtOH blended at 5%
 - BioDiesel blended at 2%
 - Performance Threshold 25% lower LCA
- Federal Policy:
 - EtOH December 15, 2010 at 5% blend
 - Biodiesel 2012 at 2% blend
- Federal View no Offset if RFS (June '09)

20 | KHK Consulting | Making Your Carbon Count

Alberta – still evolving

Policy Landscape

Specified Gas Emitters Regulation

- Large Final Emitters requirement to reduce emissions intensity
- Carbon trading system for offsets cost-effective path to compliance
- CCEMF alternative to offsets; higher price but simpler
- Fines or penalties
- Covers direct emissions from facilities, not carbon in fuel
- Renewable Fuel Standard
 - Requires bulk fuel vendors to blend in biofuels
 - Biofuels must have lower carbon intensity; achieve GHG reduction

21 | KHK Consulting | Making Your Carbon Count

- Regulates biofuel eligibility based on lifecycle carbon reduction (25% lower)
- Comparison to petroleum baseline

Alberta Policy

Question: Are Alberta biofuels eligible for carbon offsets given an RFS with a carbon intensity-based performance threshold?				
Yes, all	Some	No, none		
 Biofuel producer owns all of the GHG reduction. Clear definitions required to avoid double-counting or leakage. Point of regulation used to determine difference between upstream and downstream emission reduction. Terminals are required to blend; biofuel producers are not directly regulated. Rising carbon price increases value of offsets and thereby reduces need for biofuel incentives over time. Don't want to be out of step with Feds 	 Extent of additionality must be demonstrated beyond regulation – surplus to RFS volume, surplus to mandated GHG reduction, or by other measure. Performance standard may provide justification for defining "surplus to what?" May require update to Offset Protocol for Biofuel Production and Use. 	 Government claims full amount of GHG reduction from RFS. Lose revenue-neutral market support mechanism. Increased requirement for government incentives to achieve domestic market development and competitiveness. May require removal of Offset Protocol for Biofuel Production and Use. Begs question about biofuel volumes used in AB in excess of RFS requirement: Why not eligible? 		

The Options

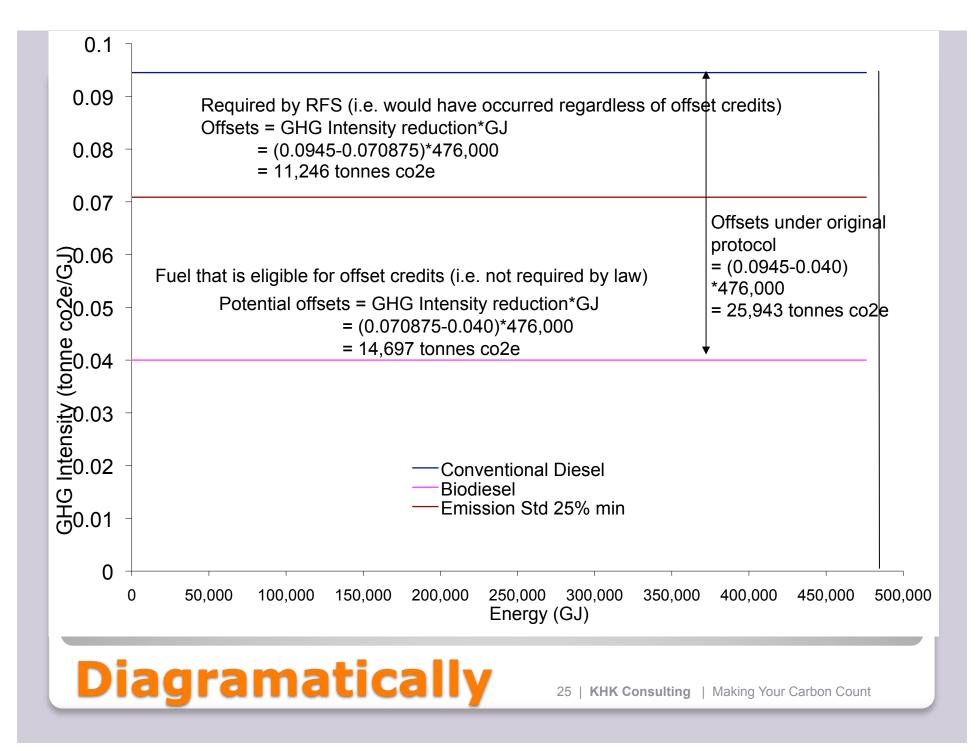
- Role of offsets in achieving cost-effective SGER compliance pathway
- Economic value of offsets for domestic competitiveness
- Continued government support for Alberta biofuel production
- Rigour of regulatory-grade offsets (additionality, leakage, etc)
- Compatibility with neighbours' carbon frameworks

23 | KHK Consulting | Making Your Carbon Count

Facility Production and GHG Intensity of the Fuel vis a vis 25% threshold

Scenario 1:

- BDL Facility 14 Ml/yr = 476,000 MJ
- Biodiesel LCA Intensity = 0.04 tonnes CO_2e/GJ
- FF Diesel intensity = 0.0945 tonnes CO_2e/GJ
- 25% Intensity reduction = $0.0709 \text{ t } \text{CO}_2 \text{e/GJ}$


GHG Savings:

- Protocol (0.09-0.04)*476 kl = 25,492t CO₂e
- RFS Overlay $(0.07-0.04)*476kl = 14,697 t CO_2e$

43% reduction in Offsets from Original

Thinking to Date

24 | KHK Consulting | Making Your Carbon Count

Facility Production and GHG Intensity of the Fuel vis a vis 25% threshold

Scenario 1:

- EtOH Facility 14 Ml/yr = 336,000 MJ
- EtOH LCA Intensity = 0.055 tonnes CO₂e/GJ
- FF Diesel intensity = 0.091 tonnes CO_2e/GJ
- 25% Intensity reduction = 0.069 t CO_2e/GJ

GHG Savings:

- Protocol (0.091-0.055)*336 kl = 12,286 t CO₂e
- RFS Overlay (0.069-0.055)*336 kl = 4,608 t CO₂e

26 | KHK Consulting | Making Your Carbon Count

62.5% reduction in Offsets from Original

Thinking to Date

- Offsets are Like Airmiles not a primary driver
- Ag Grains/Oilseeds Biofuels –feedstocks are 70% of the cost; things stalled
- Forestry Biofuels lots on the go:
 - Enerkem-Edmonton (wood and MSW)
 - Otoka gasification for power/biorefinery
 - Ensyn pyrolysis for wood waste to bio-oil
- 10 more projects under development
- RFS mandates will be difficult to fill in short term

Considerations

BioChar Protocol - Future Slides by Keith Driver, MSc, PEng, MBA Leading Carbon

28 | KHK Consulting | Making Your Carbon Count

Biggest Challenges:

- Numerous Feedstocks (baseline accounting complex – what happened to biomass before)
- Numerous ways to make biochar
- Longevity in soils depends on process, feedstocks, soil type, micro-climate, cultivation
- No direct way to measure biochar fraction

Means:

- Difficult to account for secondary emissions and activity-shifting leakage effects through land use change
- Full GHG Emissions LCA on production, processing, transportation, soil incorporation

Msmt and Accounting suiting Stating Your Cates Count

Pyrolysis Mode	Conditions	Liquid/Oil (%)	Char (%)	Gas (%)
Fast	Moderate temperature ~ 500°C	75	12	13
	Short vapor residence time ~ 1 sec			
Moderate	Moderate temperature ~ 500°C	50	20	30
	Moderate vapor residence time ~ 10–20sec			
Slow	Moderate temperature ~ 500°C	30	35	35
	Very long vapor residence time ~ 5–30min			
Gasification	High temperature >750°C	5	10	85
	Moderate vapor residence time ~ 10–20sec			

Source: Brown 2009.

Process/Products Differ 30 KHK Consulting Making Your Carbon Count

Shttp://www.biochar-international.o	rg/	Reader C	🕈 International Biochar Intiative
ole Yahoo! Google Maps YouTube	Wikipedia News (1015)▼ Popular▼		
	rnational har Initiative		
What is Blochar?		Home About Us IBI Staff IBI Board	Contact Us Donate Log-In
Blochar Technology			biochar
Biochar Policy			biochar UPDATES
Blochar Standardization	Become an	IBI Member	of Briteo
Blochar Commercialization			Biochar Featured on GSA 2010 Field Trip in Denver, CO
IBI Program Areas		IBI is a non-profit organization supporting	10/19/2010
IBI Publications		researchers, commercial entities, policy	By: Kelpie Wilson
IBI Conferences	conferences	makers, farmers & gardeners, development agents and others committed to sustainable	Online workshop for project developers on biochar stoves -
Calendar		biochar production and use.	register by 22 October
Resources	Help put the Earth		10/18/2010 By: Kelpie Wilson
Blochar Extension Service	Back in the Black	Find Out More 🕨	Biochar Sessions at 2010 ASA-

BioChar Standardization International Biochar Initiative

31 | KHK Consulting | Making Your Carbon Count

Guidelines for biochar that can be adopted by producers and retailers

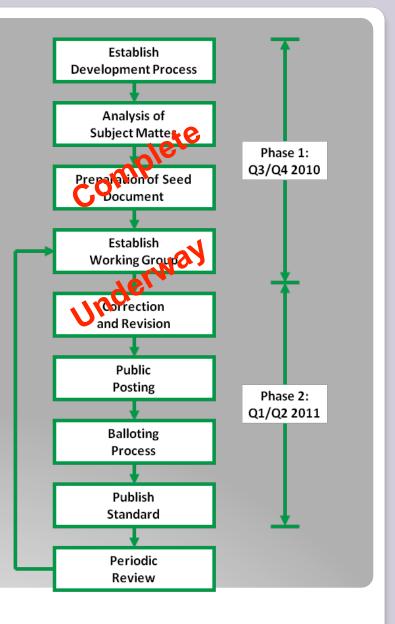
Use as basis for certification standard

- Definition of the biochar brand
- What it can include...
 - Definition of biochar
 - Set of parameters that define the product
 - Source material and processing
 - Properties and contaminants
 - Classification framework
- What it will not include...
 - Complete fit with research requirements
 - Sustainability index or GHG quantification
 - Absolute perfection

A Product/Characterization Standard

Build off of congruence in best practice guidance for standard development

Strict adherence to process required


- Engage the diverse stakeholder group active in biochar industry
- Rely on existing infrastructure of IBI for leadership
 - Provide oversight to activities
 - Formalize development and review process
- Organize an independent review committee
 Broad stakeholder coverage (project developers, ENGOs, Researchers, etc.)

Need to understand end-game Certification of Biochar Products

Defined, step-wise process for product standard development

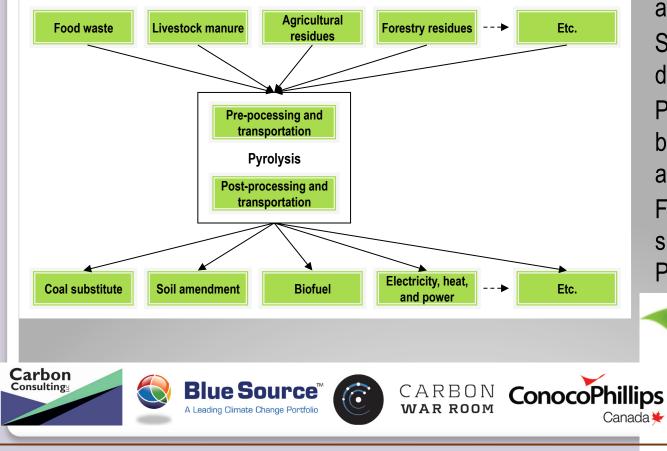
- Establish the process
- Analysis of subject matter
- Preparation of seed document
- Establish working group
- Correction and Revision
- Public Posting
- Balloting Process
- **Process Review**
- Publish Standard
- Periodic Review

Progress to Date

34 | Developing a Product Standard for Biochar

- Many related tasks that will be done in parallel
- 1) Establish business case for standards development and product certification.
- 2) Communications strategy to support stakeholder engagement.
- 3) Initiate dialogue with standard setting organizations.
- 4) Development of Biochar marketing strategy.
 - Link between characterization standard and product marketing
- 5) Development of a Biochar certification program.

Complementary Activities


Biochar Protocol Development Planned for February 2011 Stakeholder Review

36 | KHK Consulting | Making Your Carbon Count

Introduction – Background – Carbon Policy and Markets – Considerations for Protocol Development – Proposed Path Forward

Project Configurations and Platforms

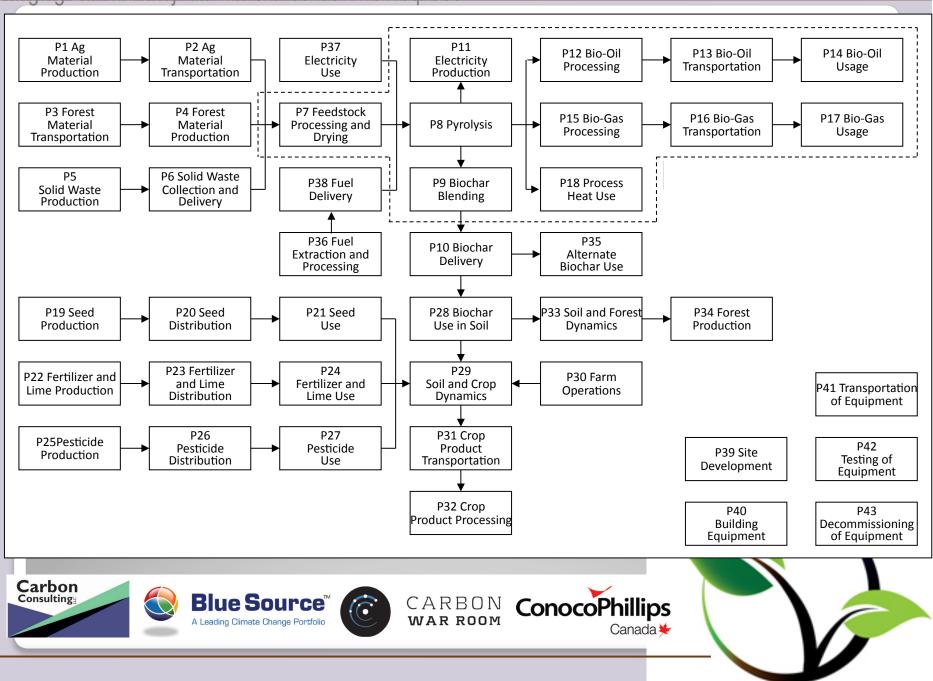
Conceptual Framework

Structured approach to emission reduction assessment Streamline protocol design process Providing flexibility between feedstocks and outputs Fit with IBI Resources such as the "Biochar Pathways Matrix" Bringing Biochar Projects into the Carbon Marketplace

Introduction – Background – Carbon Policy and Markets – <u>Considerations for Protocol Development</u> – Proposed Path Forward Emission Reductions & Carbon Sequestration

Mechanisms	Description	Key issues
Waste Diversion	Organic materials diverted from landfills would otherwise degrade anaerobically, producing methane emissions.	Various models exist for predicting the methane emissions from these sources. However, proving diversion can be challenging in some circumstances, thus adding complexity to establishing the baseline.
Avoided Waste Combustion	Organic materials that would otherwise have been combusted, producing carbon dioxide emissions.	Various models exist for predicting the GHG emissions from these sources. Emissions from the combustion of organic materials are considered as a biogenic source of emissions.
Soil Carbon Accumulation	Conversion of biomass to biochar sequesters carbon. Incorporation of biochar within the soil matrix can lead to the enhanced sequestration of soil carbon.	Concerns that carbon sequestration within the soil is not permanent are being applied to biochar, where risks are significantly lower. Soil carbon sequestration is difficult to measure.
Fertilizer Efficiency	Biochar may 1) improve the efficiency of fertilizer usage relative to yield, and 2) alter processes that lead to emissions, resulting in lower N_2O emissions from fertilizers and reduced CH_4 production.	Difficult to measure changes in CH_4 and N_2O emissions at a field scale. Modelling of N_2O can be resource intensive and requires a significant research and field data.
Electricity Displacement	Electricity produced from biochar projects may offset electricity produced from fossil fuels.	This is an indirect emission reduction and may not be considered under all programs.
Fossil Fuel Displacement	The heat, power, and biofuels produced from the biochar projects may offset fossil fuel usage downstream.	This is an indirect emission reduction and may not be considered under all programs. There may be difficulties in direct measurement given the downstream nature of the emission reduction and conversions between equivalent units of energy.

Most mechanisms have analogies into other markets/protocols


CARBON WAR ROOM ConocoPhillips Canada

Proposed Path Forward Planning: Science, Planning: Carbon policy/ markets and project design technology and feedstocks **Protocol Development Process** Vetting workshop (US **Biochar Initiative**) Webinar on technical and science issues June 15th at 8am PDT Strategic and focused Launch protocol development at US Biochar 2010 Conf. science process GHG quantification Discussion draft to prepared for 2010 IBI conference in Rio protocol development Technical science De Janeiro (Sept, 2010) document development Alberta Technical Review in Nov./Dec. 2010 VCS Protocol preparation to follow Technical stakeholder review workshop Link to CDM activity as key technical, science and protocol issues resolved Pursue approval Pursue approval of biochar protocol in of biochar protocol in \$100,000 to \$120,000 being sought to support protocol VCS Alberta development initiative (includes VCS double validation) Carbon Consulting Blue Source CARBON ConocoPhillips WAR ROOM A Leading Climate Change Portfolio Canada 🖊

Bringing Biochar Projects into the Carbon Marketplace

Introduction – Background – Carbon Policy and Markets – Considerations for Protocol Development – Proposed Path Forward

Bringing Biochar Projects into the Carbon Marketplace

Questions? karenhk62@gmail.com

41 | KHK Consulting | Making Your Carbon Count