Boreal mixedwood forests: Linking early performance of white spruce with future yield

Victor Lieffers, Zhili Feng and Ken Stadt

Regulatory Instruments

Establishment and Performance Surveys
 Stocking
 Minimum Height
 Free-to-grow assessment
 Focus on 10 m² plots

Stocking
Mortality
Competition
FTG standards

The Data

 Stand Dynamics Systems – Juvenile PSPs
 Mature mixedwood PSPs
 Data from operational Establishment and Performance Surveys

Morisita Index of Dispersion

Regular Random Clumped

0 0 0 0 0 0 0 0 0 0		000 0000 0000 00000
0 0 0 0 0 0 0 0 0 0	0 0 0 00 00 0 0 0 00 0	0000 0 0000 0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 00 0 0 00 0	00000 00000 00000 00000
IVII ~ U		

5/10/2012

7

a1 = 1.7273, a2 = 0.7608, a3 = 1.0582, a4 = 0.0353 n = 620, P < 0.001, $R^2 = 0.97,$ RMSE = 0.070).

Mortality of Spruce

Juvenile stands

Mature PSPs

$$Volume = a_1 \cdot (1 - e^{-a_2 \cdot stock^{a_3}}) \cdot SI^{a_4}$$

 $a_1 = 49.4616$ $a_2 = 5.6478$ $a_3 = 1.1324$ $a_4 = 0.7017$

 $R^2 = 0.5404$ MSE = 66.34

Stand Age

Conclusions

- Stocking is defined by stem density and spatial dispersion
- Leading trees that were small or large had no difference in mortality
- Full volume of Sw can be attained by 30-40% stocking at maturity
- Mortality over the life of stand is uncertain but very important

Free-to-Grow Standard Competition index placed in regulation

Free-To-Grow Standard

1, 1.5 or 1.78 m

Trees designated FTG usually are bigger and faster growing

FTG (mixedwood standard - 49 stands)

FTG

Not FTG

We must be careful if we include the size of the subject in the competition model.

Why do big trees grow fast?

Low competition

Superior microsite

Superior genetics

Few insects/diseases

Superior mycorrhizae

Free-to-Grow Criterion

Does not isolate effects of competition from other factors affecting growth.

How to judge a competition index

Tree Growth

Competition Index

Asymmetric Competition Light is intercepted up by the hardwood

Non- FTG

1, 1.5 or 2 m

FTG Spruce

Large spruce has an advantage over a small spruce

1, 1.5 or 2 m

Plot of height and height increment

White spruce Ht increment vs. deciduous volume (per plot)

Judging Asymmetric Competition

> Unclear with large trees.

Expected size frequency distribution when half of crop trees are FTG

Expect greater variation in the distributions of growth of leading trees when 50% of plots FTG

49 stands, 12-13 years old, boreal mixedwoods Height Increment

SW leading trees by conifer standard

Possible Implications

No shift in growth frequency distribution with FTG

- FTG standard is not a good measure of competition
- Need other theories to understand asymmetric competition

Why is this Important?

Silvicultural investments
 Change in forest structure of mixedwoods

Mixedwood Management Association Supporters: West Fraser & Weyerhaeuser **NCE-SFM**

Further Evidence

 No detectable increase in mortality of spruce (>8 yrs old) in stands with aspen
 Very small loss in height growth of spruce in aspen stands, once spruce is 1m tall.

Normal Size – Frequency distribution

Frequency

Ht

Distribution with asymmetric competition

Height Class

Height normality analysis (leading tree)

2002, For Chronicle 78: 137-145

20 year-old MOF plots

Normal

Burn pile

Annual mortality:

SDS leading trees: 7 dead / 949, M=0.1% SDS all planted trees: 52 dead/ 1585, M=0.4% Duffy Plot underplant M = 0.7% after 5-42 yrs PSP: M = 1% for the average (Yang 2002) M = 2% for the worst case (Yang 2002)