Pathological considerations in growth and yield

- The "Big Four" in Alberta
 - Decay
 - Dwarf mistletoe
 - Armillaria
 - Rusts
- Risk assessment in intensively managed stands
- Concluding remarks

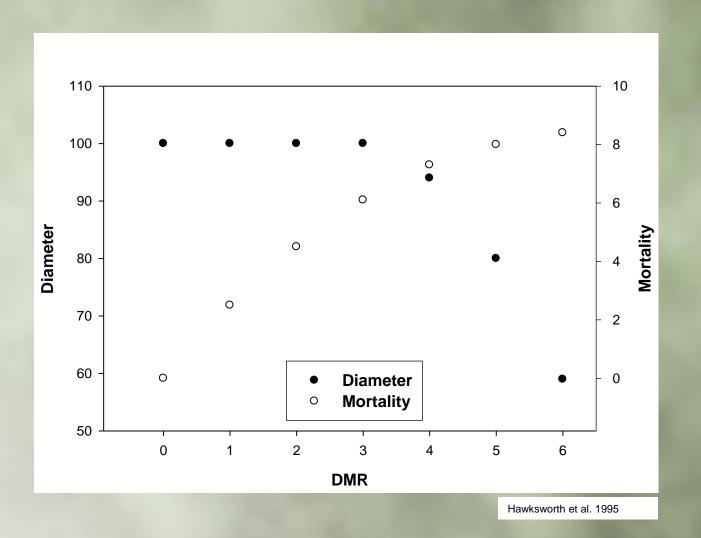
Effects of decay are typically incorporated in most models as long as net volume is considered

Age	% Decay		
31-40			
41-50	1.8		
51-60	3.2		
61-70	7.1		
71-80	14.4		
81-90	21.3		
91-100	25.2		
101-110	31.1		
111-120	36.9		
121-130	41.9		

But net volume of what? Rot is often accompanied by stain – the impact on volume varies with end product

Product	Allowable % in product		
	Stain	Incipient	Advanced
		decay	decay
Chemical pulp	no limit	?	?
Particle board	no limit	20-40%	0-5%
Lumber (constr.)	25%	10-20%	0-10%
OSB	20-30%	10-20%	0%
Mechanical pulp	10-15%	0-5%	0-1%
Lumber (furn.)	0-10%	0-10%	0%
Chopsticks	0%	0%	0%

Breck, 1987


Dwarf mistletoes

- Impacts of growth and yield have been modelled since the 1970's
 - Spread is slow and reasonably predictable
 - Reasonably easy to obtain incidence and severity data in the field
 - -Severity / yield relationships exists

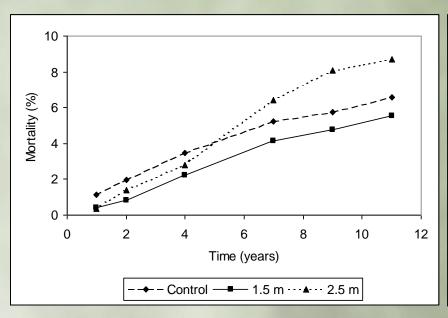
Dwarf mistletoes

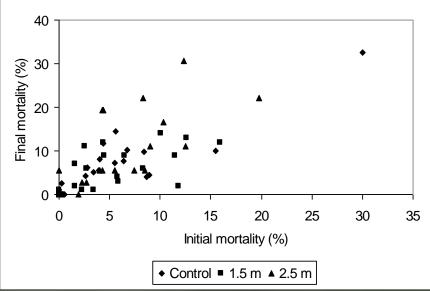
Dwarf mistletoes

- Calibration and validation of spread models won't likely be fast
- If we are attempting to adjust current growth and yield models, do we know whether current models already capture the effects of disease?

Armillaria

Although its incidence appears to diminish with stand age, larger trees are killed



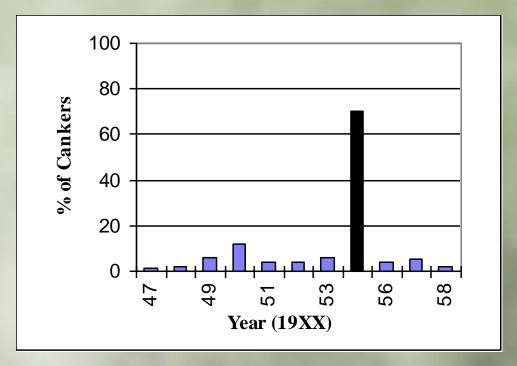


Armillaria

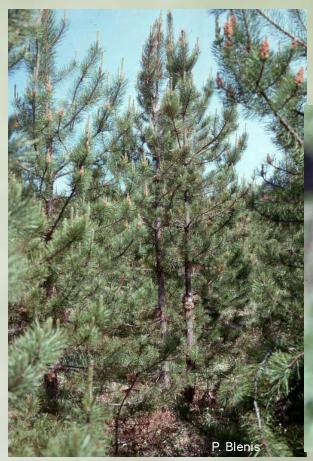
p.c.t. does not appear to exacerbate in AB

Armillaria

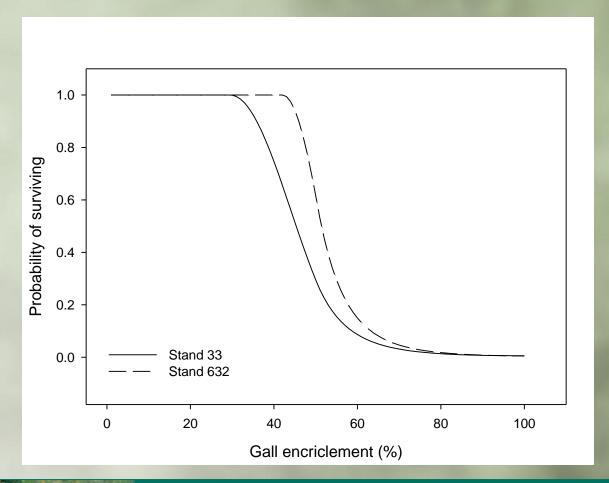
What is the effect of replacing fire with harvesting?



As harvesting replaces fire, what effect with the change in spatial scale have?


Incidence is hard to predict in time (wave years) and space

How does incidence translate to impact - Survival



How does incidence translate to impact - Survival

Risk assessment

 In intensively managed poplar plantations where some clones may be planted over large areas what is the risk of major loss?

Final thoughts

- Each pathogen has its own very unique personality
- There is no substitute for pathologists working in conjunction with modellers

