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Abstract

Satellite remote sensing has long held promise as a powerful method of detecting forest
canopy changes and mapping landscape structure over vast, often multijurisdictional
forest areas. Landsat Thematic Mapper (TM) spectral response, for example, can be
related accurately to changes in physiology and cover at a range of small to intermediate
mapping scales, These data have been available continuously for almost 20 years; many
areas have earlier satellite image archives stretching back to the early 1970s. When
considering spatially-explicit changes to landscapes — caused by natural and human
disturbances — over this time period, digital, synoptic, and repeatable satellite remotely-

sensed data are emerging as the observational media of choice that forest managers must




possess and use wisely. In this paper, successful use of satellite remote sensing in two of
Canada’s Model Forests is described. First, in the Fundy Model Forest in southeastern
New Brunswick, a 15-year TM image sequence was used to detect area changes
associated with different harvesting and silvicultural practices. Second, in the Foothills
Model Forest in west-central Alberta, grizzly bear habitat maps have been created from
multi-scene TM landcover mosaics. These map products constitute critical information
on landscape change and configuration required to answer key management questions.
The paper concludes with a prognosis for the future role of satellite remote sensing in
sustainable forest management as data quality continues to improve (i.e., increasing
spatial, spectral, temporal, and radiometric resolutions), and methods are brought into the

purview of forest managers and practitioners.
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INTRODUCTION

Forest management must increasingly address a myriad of issues associated with
measuring ecological processes and change over large areas and at many different spatial
scales. A greater appreciation of the appropriate role of satellife remote sensing
technology in monitoring forests in a wide range of ecological settings is emerging as the

defining characteristics of remotely-sensed data become more widely well-known and the




methods of handling those data become increasingly available (Franklin, 2001). Resource
management applications of remote sensing can be understood by considering scale and
four types of image resolution. Spatial resolution is the minimum resolvable unit of
measurement and is typically expressed as a pixel or raster size (e.g., Landsat-7 Enhanced
Thematic Mapper (ETM+) multispectral data are 30 m resolution). Spectral resolution is
the number and quality of bands in the electromagnetic spectrum in which the sensor was
designed to measure response. Radiometric resolution is a measure of the systems’
signal-to-noise ratio; higher radiometric sensitivity, for example, suggests a greater
likelihood of measuring a small radiant flux. Temporal resolution refers to the image

frequency of a particular area.

Each of these resolutions imposes limits on the ways in which remotely-sensed data can
be used at particular scales; for example, as large-area coverage increases, spatial
resolution typically decreases. In other words, less detail is mapped over larger and larger
areas. Much of the impetus to develop satellite remote sensing technology has been
aimed at producing higher and higher amounts of detail at what are traditionaily
considered small-or-intermediate-area mapping scales (e.g., 1:100 000 or 1:50 0600). The
trade-offs between the image characteristics, image extent, and related costs are
summarized in a relative fashion for various sensor options in Figure 1. The
interconnectedness of the factors requires users to determine in advance what the goals of
the analysis are to enable the selection of the most appropriate data source (Woodcock

and Strahler, 1987; Wulder, 1998).



Typical analysis goals include the production of land cover classification maps,
estimations of continuous variables such as leaf area index (LAI) or crown closure, and
change detection map products, Multispectral Landsat data, with 30 m spatial resolution
over an image extent of 185 x 185 km, are an ideal data source in these applications at the
small-to-intermediate mapping scales. Landsat data provide reasonably high spatial detail
at a low cost, and are also well established with a rich research history resulting in a wide
range of processing options, predictable geometric properties, and robust radiometric
processing techniques. Landsat-7 data are not subject to copyright once purchased, which
facilitated the development of a freely available Landsat-7 orthoimage coverage of

Canada representing year 2000 conditions (Wulder et al., 2002).

Innovative methods are required to assist in converting Landsat data into the desired
information products required for decision-making. This situation has helped create
opportunities for scientists to demonstrate forest management applications for which
large-area mapping data and methods are particularly well-designed. While many
potential applications exist, what is needed now are concrete examples of how remotely-
sensed data have been converted to information products that have led to improved
management in forests. Canada’s Model Forest Network has been on the forefront of this
task of meeting critical forest management information needs at the large-area scale with
medium spatial resolution mapping systems, such as Landsat. Two examples are
described in this paper that address the immediate need for high-quality, detailed
information over large areas on horizontal and vertical forest changes caused by human

disturbances to determine the sustainability of economic use of forest resources and to




identify critical areas where resource conflicts may occur and wildlife may be threatened.
Managers need to know: What is the sensitivity of Landsat data to forest changes such as
clearcuts, partial harvesting, precommercial thinning, and regeneration? What is the
best way to extract landcover information from Landsat TM imagery for input to large-

area wildlife habitat mapping applications?

To address these questions, Landsat TM imagery were used in detecting forest changes
and mapping land cover in two of Canada’s Model Forests: the Fundy Model Forest and
the Foothills Model Forest. These are two large-area, multi-jurisdictional forest
management units in southeastern New Brunswick and north-central Alberta, respectively
(Figure 2). In the Fundy Model Forest, the objective was to report the area of change in
Jorest structure in each year for which suitable Landsat image data were available over a
15 year time period (1984-1999) (Franklin et al., 2001a). In the Foothills Model Forest,
validated grizzly bear (Ursus arctos horribilis) habitat maps were required (Franklin et
al., 2001b). The objective was to generate a Landsat TM land cover map that could

provide a suitable input layer for models of bear habitat use and population dynamics.

DATA COLLECTION AND PROCESSING

Landsat Image Processing Tasks

Landsat imagery were acquired of the Fundy Model Forest on September 18, 1984,
September 21, 1985, August 23, 1986, August 10, 1988, August 7, 1992, September 6,

1997, and September 12, 1999. Landsat imagery were acquired of the Foothills Model




Forest on August 8, 1999 and September 20, 1999. These images represent the best
imagery in the archives for the months of August and September in which most of the
areas of interest were relatively cloud free; a few very small areas of cloud and cloud
shadow were identified by thresholding bright areas and shadows supplemented with
manual digitizing on-screen. Those areas were removed from the analysis with no effect

on the image processing results.

Each image was solar-zenith angle (illumination) and atmospherically-corrected using a
standard-atmosphere, model-based correction routine (Richter 1990), then geometrically
registered to the UTM projection with more than 20 ground control points at key road
intersections dispersed throughout the scene. Typically, the resulting transformations
were accomplished with less than 0.5 pixei RMSE. Cubic convolution resampling was.
used to create a 25 m output grid; in the Foothills Model Forest, an additional step was to
‘mosaic the Landsat images together and normalize the result such that the seam between
them — principally due to phenonological differences — was not visible. The Tasseled Cap
Transformation (Crist 1985) was used to derive the brightness/greenness/wetness spectral

indices for input to the mapping procedures for each Model Forest.

Mapping Change in the Fundy Model Forest

The TM wetness index was subtracted from each preceding image date and linearly-

enhanced to emphasize the forest differences of interest. Thresholds were applied based

on field knowledge of areas disturbed by clearcutting, partial harvesting or silvicultural




treatments; for example, the largest difference in wetness was found in the clearcut areas,
followed by shelterwood and seed tree cuts, partial harvesting with legacy patches, and
precommercial thinning. The available New Brunswick forest inventory GIS data were
used to ‘mask’ all non-forest areas from the change detection procedure; obviously, since
the GIS forest cover data were a static layer (compiled in 1997 from 1993 photography)
some minor error may have been introduced in this masking process (i.e. some areas that
changed in the 1984-1985 scene were not changes to forest cover, but occurred in
agricultural or wetland areas for example, and may have ‘escaped’ the mask). The
thresholds of wetness differences were used to develop a map. This process is illusirated
graphically for the 1984-1985 image pair in Figure 3. The final results of the image
-thresholding process for the Model Forest — the accumulated changes — are shown for the-

:available image sequence in Figure 4.

Mapping Land Cover in the Foothills Model Forest

The approach to producing a land cover map of the Foothills Model Forest was based on
a decision-tree classifier, a unique combination of unsupervised and supervised
classification techniques that rely on spectral, digital elevation model, and polygonal GIS
data to extract the maximum information content from the assembled mapping database
(Franklin er al., 2001b). First, an interdisciplinary team of remote sensing scientists,
foresters, wildlife biologists, and botanists measured conditions at 320 field data

locations, each approximately 0.1 ha in area. These locations were used as maximum




likelihood training areas (to scparate forest and vegetated classes) after comparison with
Alberta Vegetation Inventory (AVI) data and digital orthophotography to determine the
confidence that the training area pixels belonged to the identified field class. Second, the
following sequence of processing steps was implemented: K-means unsupervised
classification was used to separate forest and non-forested areas; an empirical slope
decision rule separated lakes and shadows; an empirical elevation decision rule separates
shadows and closed conifer stands at lower elevations; empirical slope decision rules
separated different shrub and wetland classes based on distances to roads and streams;
and empirical GIS overlay decision rules were used to embed cultural features, forest
harvest polygons, and to merge classes which were considered spectrally

-indistinguishable based on Bhattacharryya Distance measures.

The final land cover classification map is shown in Figure 5. Accuracy assessment of this

map product was based on the available digital orthophotography and a random sample

of 494 locations.

RESULTS AND ANALYSIS

Fundy Model Forest Change Detection Application

The final map of forest structural changes detected in forest areas of the Fundy Model

Forest is contained in Figure 4. The average annual change on the landscape was



approximately 3068 ha over the 15 year interval, with apparently declining mean annual
change from the mid-1980s to the late 1990s. The maximum annual change was more
than 7000 ha in 1985-1986; the minimum annual change was less than 2500 ha in each of
the years from 1986 to 1992. This estimate of change is almost certainly low; an artifact
of the six year time interval between the 1986 and 1992 TM images in which changes of
lesser severity (e.g., some partial cutting, thinning) could not be distinguished. In the late
1990s, the annual change was approximately 3500 ha. These estimates of total change
(almost 50 000 ha) as a percentage of the total Fundy Model Forest land base (more than -
400 000 ha) suggest that approximately 12% of the total land area has experienced a
change in forest structure; annually, this is equivalent to a rate of change of 0.81%. Since
the available productive forest land (approximately 240 000 ha) represents approximately-
60% of the total land base, the true estimate of forest structure change is probably closer -
to 20% in the time interval studied, which translates into a rate of change of

approximately 1.3% annually.

Great care must be taken in comparing rates of change in forests from different areas of
the world and using different methods of analysis. Typically, rates of forest loss are
reported rather than changes in forest structure; and, typically, only two image dates
some years or decades apart are compared, rather than the detailed year-by-year or
multiple comparisons as reported in this study. For example, in a large forested area on
the border of China and North Korea, 1972 and 1988 Landsat imagery were classified
into forest and non-forest classes and difference image maps created (Zheng ez al. 1997).

Much of the change detected was a result of clearcutting; partial harvesting had increased
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in this area after 1980 as a result of government policies encouraging selective harvest
over clearcutting, but the classification scheme did not show many of those areas as
changes. Their method was unable to distinguish natural and human disturbances because
not enough training data were available for use in the classification procedure. The
annual rate of forest cover loss was —0.73% over the 16 year period for the study area, a
comparable rate to that reported by Spies et al. (1994) in the US Pacific Northwest for a
similar period using two Landsat images. Outside the Changbai Biosphere Reserve, the

annual rate of forest disturbance increased to 1.12% (Zheng et al., 1997).

In British Columbia, Sachs ef al. (1998) reported a large region of the interior forests to
be in the early stages of fragmentation. Their analysis was based on the classification of :
Landsat imagery acquired in 1975 and 1992. Human disturbance was shown to have
affected 8.4% of the forest structure in a large study area outside protected areas between
1975 and 1992, Mature and older conifer forest area decreased more than 10%,
accompanied by decreases in mean conifer patch size and the percentage of interior forest
area. The annual rate of change was estimated to be 0.49% per year. This was thought to
be at the low end of the range of disturbance rates for managed, temperate forests (Sachs
et al. 1998). For example, in Minnesota, Hall et al. (1991) reported Landsat-derived
annual conifer forest disturbance rates of 1.8% over a 10-year period; in New Jersey,
Luque et al. (1994) classified two Landsat images and found pine-oak forest stands over
a wide area to be subject to an annual forest disturbance rate of 2.2%. Influences on forest

fragmentation in different watersheds can be strikingly different (Tinker et al., 1998), and
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order-of-magnitude changes in rates of forest disturbances can occur on public, private

and wilderness (protected) lands.

Such trends are apparent in the Fundy Model Forest change detection map, which has
been used in a forest fragmentation analysis leading to insight into sustainability of
economic use of the forest resource (Betts and Taylor, 2002). The large, intact ‘white’
area in the bottom right (southeast corner) of the map comprises Fundy National Park;
only a few small changes occurred inside the park boundary compared to the areas
adjacent to the park but within the Model Forest. These small areas of change inside the
park represent a number of small human disturbances (e.g., road widening) and natural
disturbances — such as beaver pond flooding, tree blowdown, and insect defoliation — that
are likely also present but undistinguished from other changes in the larger mapping -

product.

Foothills Model Forest Grizzly Bear Habitat Application

The overall classification accuracy of the final map generated by the decision tree
classification procedure was approximately 83% (Figure 5). In the forest and vegetation
plots only, 75% accuracy was achieved; collectively, these were the lowest accuracies,
compared with higher classification accuracy in the non-vegetated classes (e.g., snow,
rock, shadow were all above 90%). First, the mixed deciduous and mixed conifer classes

resembled cach other as well as resembling the closed or open deciduous and conifer
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classes. In the mixed classes, the actual amount of mixing of the two plant lifeforms and
the appearance of the crowns on the image did not provide a spectral difference that

could be consistently identified.

The map has been used in several ways to support bear management in the greater
Yellowhead Ecosystem. The primary use is in the creation of a grizzly bear habitat map;
land cover maps are needed to provide interpretations of habitat classes, which often rely
on predictive or assumed characteristics that accompany the various cover types, such as
understory conditions and presence/absence of certain food plants. One procedure is to
assign classes a habitat quality ranking (e.g., Kansas, 2001). Another approach is to
develop resource selection functions (RSFs), which are models that enable: prediction of
habitat use by grizzly bears, or the ‘probability of occurrence’ of bears on the landscape
(Manly et al., 1993, Boyce and McDonald, 1999). For example, Nielsen et al. (2002a,
2002b) suggested the Landsat land cover map produced for the Foothills Model Forest
area explained approximately 6% of the variance in bear habitat use/availability data,

depending on season.

The Foothills land cover map was also used to generate landscape metrics at different
spatial scales; for example, at the watershed scale (approximately 300 km?) areas of low
and high disturbance were related to bear distribution data obtained from DNA-samples
at bait stations (Popplewell ez al., 2002). Areas with low mean patch size, high edge

density, and a large number of patches were associated with low bear density estimates.
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CONCLUSION

Satellite remote sensing imagery acquired by the Landsat Thematic Mapper and similar

sensors can be used to generate information products of high interest and value to forest

managers concerned with large-area, multijurisdictional forest management questions.

Forest cover change maps and landscape structure maps are two such information

products available with reasonably modest investments in understanding image

resolution, mapping scale, and processing methods. Two examples are used here to

emphasize this key point:

1)

2)

Mapping. differences in Landsat TM wetness indices acquired in 1984, 1985,
1986, 1992, 1997, and 1999 in the Fundy Model Forest of New Brunswick
showed distinctive patterns associated with forest structure changes known to
have occurred as a result of silvicultural and harvesting operations. The rate of
change in forest structure was quantified over the 15 year time period and the
spatial arrangement of the changes detected used as input to a forest
fragmentation analysis,

A ‘decision-tree’ classification of a Landsat TM image mosaic in the Foothills
Model Forest of Alberta was determined to be approximately 83% accurate in
separating open and closed conifer and deciduous forests, wetlands, shrub and
grass areas, which are of interest in identifying bear habitat and relating structural

features to bear behaviour over time. This land cover map was used in two

13



14

principal ways: a) to develop a grizzly bear habitat map in conjunction with
resource selection functions, which predict bear habitat use, and b) to provide a
consistent and quantitative data layer for derivation of forest fragmentation

landscape metrics, which were related to bear density estimates.

Future Directions

Many new options will be available in the near future for the remote detection, mapping,
and monitoring of forest cover and change largely based upon research efforts with
current and newly available data types and national mapping programs. For example, the
existence of comprehensive large area sampling campaigns, such as the National Forest
Inventory, that regularly capture broad-scale forest characteristics provide for a training -
data source for remotely-sensed data allowing for forest monitoring over a range of

ecosystems and jurisdictions.

Improvements in spatial, spectral, radiometric, and temporal resolution are expected in.
forthcoming satellite sensors. Panchromatic image spatial resolution is currently
approximately 1m over image swath-widths up to 11 km (IKONOS), and 15 m over
image swath-widths of 185 km (Landsat-7 ETM+), but data fusion and large-area
mosaicking protocols are vastly improved (Solberg, 1999). Future sensors will combine
high spatial tesolution with increased spectral resolution — commonly known as
hyperspeciral imagery. The radiometric resolution of several recently-launched and

proposed sensors is also higher; for example, IKONOS imagery are collected at 11 bits
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per pixel, compared to the more familiar Landsat 8-bit data. Temporal resolution may be
more difficult to increase for higher spatial sensors, but directable sensor heads, and
using multiple sensors with compatible data provide for additional data acquisition

flexibility.

Data acquisition and processing costs are often an inhibiting factor in satellite remotely
sensed data use, but both continue to decrease significantly as new sensors are deployed
and computer hardware/software costs decline relative to performance. An example of a
new sensor configuration with great promise in forestry applications is light detection and
ranging (lidar). Lidar data are well suited to measurements of the vertical distribution of
forest structure (Lefsky et al, 2001). Multiple dates of processed lidar imagery enable
the detection of subtle changes at very high spatial resolution. For example, with lidar it
is possible to consider monitoring forests, or individual trees, for height increment over
time. The increasingly refined nature of data products available ready to use directly
from the data vendors allows analysts to spend less time processing imagery and more
time analyzing imagery. In turn, this will enable a larger user group for imagery to
emerge, with the user group largely composed of individuals who are experts in domain

areas of interest, such as forest pathology and inventory, rather than image processing.
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List of Figures

Figure 1. Relative relationships between image extent (width), spatial resolution, sensor
elevation, and costs. Common sensor types are placed in the approximate location that

their specific characteristics suggest.

Figure 2. Study areas in the Fundy Model Forest in southeastern New Brunswick and the

Foothills Model Forest in north-central Alberta.

Figure 3. Graphical illustration of the Enhanced Wetness Difference Index (EWDI) and
thresholding procedure (Franklin er al., 2001a). This arca is east of Sussex, New
Brunswick, near Hayward Brook; north is to the top of the map, arca shown is

approximately 200 km?.

Figure 4. Accumulated change in forest structure for the entire 400 000 ha Fundy Model

Forest including Fundy National Park (bottom right corner) (Franklin ef al., 2001a).

Figure 5. Final land cover classification map of the Foothills Model Forest and
surrounding grizzly bear study region. Approximately 83% accuracy was determined
through independent verification of classes at 494 field and orthophotograph sample sites

in this 10000 km? region of the Alberta Yellowhead Ecosystem.
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