The Dynamics of In-Stream Large Woody Debris

Mohammad Bataineh, Lori Daniels, Trevor Jones, Sonya Powell, Evan Henderson, and Dave Andison

Research Goals

I) Understand LWD dynamicsII) Links between riparian forests and LWD

Questions

- 1) Time since death of LWD?
- 2) Rates of decay?
- 3) Processes determining recruitment?

the shirt where a said

- small, headwater streams
- width <3.5m, no transport
- mature riparian forests
- 5 pine-dominated sites
- 5 spruce-dominated sites

Photo: Sonya Powell

LWD Time Since Death: 2 to 143 years (n = 186 logs) pine ≤ 86 years (n = 113) spruce ≤ 143 years (n = 73)

DC I - 1997

DC II - 1968

DC III - 1951

DC IV - 1943

Young LWD bridge decay I & II perpendicular Old LWD loose & buried decay III & IV angled & parallel

White & Black Spruce

uneven-aged, variable rates of initial growth, tree death relatively continuous in 20th C

Lodgepole Pine post-fire, even-aged, fast initial growth, tree deaths after crown closure, no LWD predated the fire

LWD year of death

What happens during the first 50 years after fire?

2001 Dogrib Fire

- 5 headwater streams
- white-spruce dominated
- not salvaged
- regenerating to pine

Frequency distribution of LWD Mature spruce LWD vs Pre-fire spruce LWD

Frequency distribution of LWD Mature LWD vs Pre-fire LWD + Post-fire recruits

LWD Depletion Rates: Mature spruce LWD vs Pre-fire spruce LWD

LWD Depletion Rates: Mature spruce LWD vs Pre-fire LWD

If no additional LWD input:

50% reduction of LWD in 50 years

50% reduction of LWD in 39 years

LWD Depletion Rates: Mature spruce LWD vs Pre-fire LWD

If no additional LWD input:

80% reduction of LWD in 83 years

80% reduction of LWD in 79 years

Future LWD Dynamics

- Mature forests have ~continual long term supply of LWD due to stand dynamics
- Burned forests have pulse of LWD from fire

 Size of and duration of pulse?
 Lag before LWD affects stream function?
 Lag before new forest contributes new LWD?

Snag fall rates?

Lag between fall and function?

Young LWD

30 years

oung LWD nominal function LWD increasing function Old LWD multifunctional

How long before new forest will contribute new LWD?

Lodgepole Pine post-fire, even-aged, fast initial growth, tree deaths after crown closure

Implications of the Dogrib Study

- 70-80-yr lag: fire to new functional LWD
- snags surrounding headwater streams provide a source for LWD recruitment
- retain post-fire buffer zones of snags especially in riparian forests that
 - are susceptible to seasonal floods and erosion
 - provide habitat for threatened, rare or endangered species

Chronosequence Study

- Comparison of LWD in riparian forests of different ages and composition
 ~50 year-old pine (n = 4)
 - ~50 year-old mixed species (n = 3)
 - $-\sim 100$ year-old pine (n = 3)
 - ->150 year-old spruce (n = 3)

А

Т

Young Mixed

Chronosequence Study

LWD time since death and depletion rates
Does LWD in young forests decay at the same rate as LWD in mature forest?

Conclusions

- LWD persists decades to centuries
- LWD position relates to decay and determines in-stream function with time
- LWD recruitment depends on disturbance and stand dynamics
- Changes to LWD abundance have long-term implications for stream function

Acknowledgements:

Research Partners and Funding Agencies:

Research Assistants: K. Terry, K. Werner, J. Trau, S. Wilson, C. Bambrick, L. Parsons, B. Sawiz, V. Yan, J. Smith, O. Freeman, E. Henderson, A. Nicoll, N. Barrett, S. desRoches, R. Chavardes, and J. Amerongen-Maddison

