

The impact of Mountain Pine Beetle on Fire Behaviour - A case study of the Mitchell Ridge Prescribed Burn, Kootenay National Park, Canada.

> Rick Kubian Parks Canada Agency Radium Hot Springs, B.C., Canada

Overview

- Introduce Mitchell Ridge Prescribed Burn
- Outline Research
- Describe Prescribed Burn
- Review Results
- Observations

Mitchell Ridge Prescribed Burn

- Located in Kootenay National Park in SE British Columbia
- Prescribed Burn part of ongoing Parks Canada Agency program aimed at restoring historic fire regime
- Planned 4500 hectare unit to meet a number of objectives
 - Contribute to area burned targets
 - Reduce MPB susceptible habitat
 - Restore critical wildlife habitat

Mitchell Ridge Prescribed Burn Landscape Overview

- Burn area largely impacted by historic fire in 1917
- Closed lodgepole pine dominated forest on valley walls
- Kootenay Valley heavy fuel loading
 - MPB since mid 1980s
- Split Peak PB north end of valley fall 2006 and 2007

MPB Affected Fuels Monitoring

- Saw opportunity to contribute to significant questions
 - Rate Of Spread
 - Intensity
 - Crown Fire Initiation
- Conceptually built into PB plan
- Established broad methodology and began to gather data one year out

KNP Split Peak PB 09/16 2007 Photo Trevor Jones

Research Design

- Established three plots:
 - 1- MPB affected 1980s
 - 2 MPB currently affected
 - 3 unaffected by MPB
- In a line across slope
- Designed for a single line ignition

British Columbia, Canada

Weather Stn.

X

Research Design – Plot Layout

- Study Site = 1 core station and 9 substations on a 100 metre grid
- At all stations
 - Thermocouple
 - Duff pins
 - Photo plots
- At core station
 - Large Fuel Sampling
 - In-Stand Cameras
 - Stand structure plots

Methods – All Stations

- Established Rate of Spread and Temperature Flux
- Utilized HOBO[™] and Wren Greenline[™] thermocouples and data loggers
- ROS calculated following Simard 1984 utilizing100 metre grid

Methods – Core Stations

- Established Large Fuel Consumption following Brown 1982
- Byrams equation
 I = Hrw to calculate
 Intensity
 - H = heat yield
 - r = ROS
 - w = large fuel consumption
- Established on-site fire behaviour observations utilizing In-stand Cameras

Burn Day Conditions

- 1300 MDST weather
 - Temperature 20.6° Celsius
 - Relative Humidity 27%
 - Windspeed 10.2 km/h
 - 24 hour Precipitation 0.0 mm
- CFFDRS
 - Fine Fuel Moisture Code 91.9
 - Duff Moisture Code 42.1
 - Drought Code 106
 - Build Up Index 42.3

Main Unit Ignition Saturday May 31

- Main Unit Ignition approximately 1330 MDST
- Ignition completed by two helitorch runs approximately 500 meters below plots

Photos Darren Quinn Parks Canada

Observed fire behaviour

Initial Observations

- All three core plots consumed by crown fire
- June 1st Collected
 - In-stand cameras
 - Thermocouples
 - Remeasured Duff pins and large fuel consumption

Results – Rate of Spread

- ROS calculations challenged at all sites
- Combination of observations and thermocouple data provide best picture
- ROS for upper triangle utilized in Intensity calculations

Plot	Location	Rate of Spread m/min		
MPB1	A-Cr-B	27.6		
MPB1	C-A-D	37.1		
MPB1	A-D-B	31.8		
MPB1	G-C-F	7.5		
MPB1	G-C-D	6.2		

Results – Temperature Flux

Station	Residence times (minutes)				
	> 60°C	>200°C	> 500°C		
Core	79.8	20.2	7.1		
А	23.3	8.1	3.9		
В	21.8	8	1.9		
С	12.7	3.2	1.2		
D	46	20.7	12		
Ε	39.9	20.2	3.3		
F	16.9	3.4	1.3		
G	32.5	9.6	12		

Results - Large Fuel Consumption

Pre- and Post-Burn Fuel Load Changes by Plot

Calculated Fire Intensity – Site 1

Predicted	Fire	Fuel type	Fire type	Rate of	Fire
	behaviour			spread	intensity
	model			$(m \text{ sec}^{-1})$	$(kW m^{-1})$
Predicted	CFFBPS	C3	Crown	0.3	6553
Predicted	CFFBPS	M3	Crown	0.47	17962
Predicted	BehavePlus	SB3	Passive	0.36	6208
			crown		
Predicted	FMAPlus	10M	Surface	0.21	3648
Observed	_	-	Crown	0.46	40820

1 st spot fire ignition 1401:50 hrs Head fire: 1402:40

Observations

- MPB 20+ year fuels are a volatile fuel type
 - ROS likely linked to fuel that is carrying fire
 - Fuel bed with abundant raised fuels not functioning like forest floor fuel
 - Large volumes of large fuels

 longer combustion time and severity

MPB1 Station A 360° Preburn (Above) Postburn (Below)

Summary

- Contribute observed Fire Behaviour in MPB affected fuel
 - ROS /Fuel Consumption
- Fire Behaviour in MPB affected fuel is not well represented by current fuel models
- Fire behaviour in MPB affected fuels 20+ years may be a concern
- Prescribed burns can play a role in this type of research

Photo Dave Schroeder FERIC