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A B S T R A C T

Accurate and current road network data is fundamental to land management and emergency response, yet
challenging to produce for unpaved roads in rural and forested regions using traditional cartographic ap-
proaches. Automatic extraction of roads from satellite imagery using deep learning is a promising alternative
gaining increasing attention, however most efforts have focused on urban paved roads and used very high spatial
resolution imagery, which is less frequently available for rural regions. Additionally, road extraction routines
still struggle to produce a fully-connected, vectorized road network. In this study covering a large forested area
in Western Canada, we developed and evaluated a routine to automatically extract unpaved road pixels using a
convolutional neural network (CNN), and then used the CNN outputs to update a pre-existing government road
network and evaluate if and how it would change. To cover the large spatial extent mapped in this study, we
trained the routine using moderately high-resolution satellite imagery from the RapidEye constellation and a
ground-truth dataset collected with smartphones by organizations already operating and driving in the region.
Performance of the road extraction was comparable to results achieved by others using very high-resolution
imagery; recall accuracy was 89–97%, and precision was 85–91%. Using our approach to update the pre-existing
road network would result in both removals and additions to the network, totalling over 1250 km, or about 20 %
of the roads previously in the network. We discuss how road density estimates in the study area would change
using this updated network, and situate these changes within the context of ongoing efforts to conserve grizzly
bears, which are listed as a Threatened species in the region. This study demonstrates the potential of remote
sensing to maintain current and accurate rural road networks in dynamic forest landscapes where new road
construction is prevalent, yet roads are also frequently de-activated, reclaimed or otherwise not maintained.

1. Introduction

Accurate and up-to-date information on the location of roads is an
increasingly fundamental dataset for a wide range of planning, emer-
gency response, conservation and research activities globally
(Barrington-Leigh and Millard-Ball, 2017). However, the routine map-
ping of roads and their associated attributes is often lacking, especially
in more rural and forested regions where roads are often unpaved
(Prendes et al., 2019; Workman et al., 2016). Even small changes in
rural road networks can have large impacts on human wellbeing (e.g.,
access to markets and services), environmental integrity and wildlife
health (e.g., habitat fragmentation, increased risk of mortality). A
particular concern in rural areas is understanding how road networks
alter the fundamental landscape structure, which can result in cas-
cading ecological implications (Bennett et al., 2011). Such

understanding requires accurate road network data, which can be dif-
ficult to produce and maintain since unpaved road networks are often
highly dynamic. For example, in areas with intensifying exploitation of
timber, minerals, fossil fuels and arable land, new road construction
may be very rapid as infrastructure is developed to access sites and
transport materials (Laurance and Balmford, 2013). Meanwhile in areas
with ongoing land reclamation or rural abandonment, previously ex-
isting unpaved roads may no longer be accessible once vegetation re-
grows. These realities present challenges to maintaining rural road
network databases using traditional cartographic approaches such as
physical mapping with GPS or manual delineation from photo-
interpretation.

An alternative (or complementary) approach is to automatically
extract road information from remote sensing data – particularly ima-
gery acquired from space or air borne sensors. Since the early 1980’s, a
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large number of road extraction approaches have been investigated
with ranging degrees of success (see review by Wang et al., 2016,
amongst others). Most recently, convolutional neural networks (CNNs)
– a form of deep machine learning – have shown marked improvement
over conventional image classification for high level feature extraction
computer vision tasks, including road extraction (Gao et al., 2019). By
training a CNN on many examples of road segments across a variety of
conditions, the CNN is able to use both variations in the brightness of
the road surface and local morphology to help in road extraction
without significant pre-processing, and generally achieving better re-
sults than other approaches (e.g., Alshehhi et al., 2017; Das et al., 2011;
Gao et al., 2019; Xu et al., 2018).

To date, most deep learning road extraction efforts have focused on
mapping paved roads in urban locations and utilized very high spatial
resolution imagery (i.e., ≤ 1 m pixels), which may limit their applic-
ability to unpaved road networks (Xu et al., 2018) for several reasons.
Firstly, models built on urban datasets may perform poorly in rural
areas due to differing road surface conditions and surrounding land
covers. Additionally, even if urban models can be successfully applied
to rural roads, the limited temporal and spatial coverage of very high
resolution imagery is typically not adequate for frequent mapping over
large extents, and such imagery is less available in rural regions.
Therefore, road extraction techniques applicable across broad spatial
extents in rural and forested regions are still lacking.

In this study, we evaluated a CNN road extraction routine for un-
paved roads using moderately high-resolution RapidEye imagery (5 m
pixels) covering a large area in the Rocky Mountain foothills of Western
Alberta, Canada. The RapidEye constellation of commercial satellites
enables frequent imaging over large areas while maintaining relatively
fine spatial resolution (Tyc et al., 2005), making it a strong candidate

for extraction and monitoring of rural road networks over time. To
obtain training and validation data over a large area and close in time
to the imagery acquisition, we took a participatory approach and re-
cruited people already working and driving in the study region to use a
road-tracking application that can be installed on most mobile devices.

We chose to focus this study in Western Alberta due to the dense and
dynamic network of unpaved roads serving local forestry, mining and
oil and gas activities, and concerns over the implications of current and
expanding road networks for the recovery of grizzly bears (Ursus arctos)
present in the region. The provincial government listed the grizzly bear
as ‘Threatened’ in 2010 in response to low population estimates and
high levels of human caused mortality and initiated efforts to support
and monitor population recovery. As part of these efforts, road density
thresholds have been recommended for sensitive habitat to limit over-
development and human access (Alberta Environment and Parks,
2016). These thresholds were based, in part, on studies showing that
mortality risk is higher for bears near roads (Benn and Herrero, 2002;
Boulanger and Stenhouse, 2014) and highlight the need for up-to-date
road network datasets for the region.

The principle objective of this study, therefore, was to develop and
evaluate the accuracy of automated extraction of unpaved roads across
a large grizzly bear recovery area using a CNN trained with RapidEye
satellite imagery. We also developed a semi-automated routine to up-
date a pre-existing road network dataset and discuss how road densities
across the region might change when calculated on an up-to-date da-
taset. This study demonstrates the potential of moderately high-re-
solution imagery, participatory data collection and deep learning to
map rural roads across large areas, and highlights the importance of
maintaining up-to-date road network datasets in dynamic landscapes.

Fig. 1. Map of the study area, which corresponds to the 22 grizzly bear watershed units (GBWUs) that make up the recovery zone within the Yellowhead Bear
Management Area. The roads shown are the pre-existing, publicly available road network dataset.
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2. Materials and methods

2.1. Study area

Our study area was the grizzly bear recovery zone within the
Yellowhead Bear Management Area (Alberta Environment and Parks,
2016) in Alberta, Canada (Fig. 1), which has been separated into ‘Core’
(n = 16) and ‘Secondary’ (n = 6) grizzly bear watershed units
(GBWUs) (Nielsen et al., 2009). It covers approximately 12,000 km2 of
the Rocky Mountain foothills, bounded by Jasper National Park to the
west and the more populated lowlands to the east. The area is primarily
public land with mixed land uses related to industrial-scale natural
resource extraction (i.e., open-pit coal mining, forestry, and oil and gas
development) and recreation, leading to a dynamic and dense network
of roads and other linear features such as pipelines and seismic lines.
Land cover within the foothills consists of conifer, mixed, and decid-
uous forests as well as bogs, meadows, and forests regenerating from
limited wildfire activity and widespread forest harvesting (Franklin
et al., 2001). The climate is typically long cold winters and cool wet
springs, with prolonged snow cover at higher elevations (Janz and
Storr, 1977).

2.2. Data and preprocessing

2.2.1. Satellite imagery
We utilised orthorectified (Level 3A) RapidEye satellite imagery

acquired between August 8 and September 17, 2017. We mosaicked
image tiles, visually choosing the best image when overlapping tiles
were available (approximately 15 % of the study area). Cloud cover was

low (approximately 0.5 % of the study area) and the angle of ob-
servation averaged 8.8 % off-nadir (SD = 4.9 %).

2.2.2. Participatory ground truth
In order to create an accurate ground truth dataset of known roads

in the study area, we asked organizations working in the region to have
their employees use a free road tracking application while driving roads
during their daily work activities. The application – RoadLab Pro – was
designed as a data collection tool for the World Bank (see pro-
gressana.com) and utilises the GPS and the accelerometer on a smart-
phone or tablet to automatically map driving location and speed. We
provided the application to six different users working for industrial
and non-profit organizations operating in the region. Data was collected
between June 2018 and March 2019 for approximately 1000 km of
roads.

2.2.3. Existing road networks
The Government of Alberta maintains an authoritative source of

publicly available road data for the province. To understand how this
existing road network would change if updated using our routine, we
downloaded the road network through the GeoDiscover Alberta data
portal in October 2017 and selected all non-paved roads for the study
area. Non-paved roads in the region consist of one- and two-lane roads
with both earth and gravel surfaces ranging from 5 to 12 m in width.
We also obtained a road network dataset from West Fraser – a local
forestry company – that identified active and de-activated forestry
roads within their Forest Management Area. This dataset covered a
subset of the study area, and we used it to help determine a CNN
probability threshold to remove roads from the publicly available road

Fig. 2. Schematic of the road extraction routine and subsequent updating of the existing publicly available road network.
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network (see Section 2.4).

2.2.4. Tiling of data and preprocessing
In order to create an input dataset for the CNN, we first needed to

extract RapidEye image tiles with complete ground truth coverage. To
create a candidate set of input tiles, we extracted 300 × 300 pixel tiles
(2.25 km2) from both the RapidEye imagery and the preprocessed
ground truth data. We ignored areas more than 1750 m from roads in
the ground truth dataset to limit the number of tiles to a manageable
size and minimize the chances of including tiles with roads that were
not driven during ground-truth data collection. This produced 1850
candidate tiles, which we manually screened to choose only tiles for
which all visible roads were in the ground truth dataset. This resulted in
307 screened tiles, 90 % of which were randomly chosen for training (n
= 277), leaving 30 tiles for independent validation (Fig. 2). For CNN
training and prediction, we extracted the red, green and blue (RGB)
RapidEye bands and rescaled each band from 0 to 1 based on the
minimum and maximum of each tile.

2.3. Road extraction

2.3.1. Convolutional neural network (CNN)
We trained the CNN using the SegNet architecture designed to

provide pixel-wise image segmentation (Badrinarayanan et al., 2017)
and programmed in Python 3.6 using the PyTorch library (Paszke et al.,
2017). Data inputs consisted of 64 × 64 pixel patches from the
screened training tiles. For each epoch, 10,000 random sub-samples
were drawn and each sub-sample was randomly flipped, mirrored, or
unaltered. We used a base learning rate of 0.01, stochastic gradient
descent optimization with momentum (0.9) and weight decay (0.0005),
and a scheduler to decrease the learning rate by a factor of 10 after two,
five and seven epochs (however five epochs was deemed sufficient to
minimize loss). Due to the imbalanced nature of sparse road pixels re-
lative to abundant non-road pixels, class weighting was applied in the
loss function based on the abundance of each class in the dataset, re-
sulting in a weight of 0.95 for the road class and 0.05 for the non-road
class.

2.3.2. Post-processing
To refine the initial binary CNN prediction, we implemented a two-

step post-processing approach utilizing both the binary prediction and
probability output obtained from the trained CNN (Fig. 2). Post-pro-
cessing is commonly required to improve road extraction performance
by removing small or non-linear regions and connecting broken road
segments (Alshehhi et al., 2017; Das et al., 2011; Gao et al., 2019). We
developed a relatively simple and quick post-processing workflow,
adapted from Das et al. (2011), using thresholds associated with
properties of labeled image regions that can be created with freely
available image processing tools.

In the first post-processing step, applied to each tile, we grouped the
binary CNN prediction into contiguous regions and, for each unique
region, extracted the mean probability of being a road (derived from
the CNN probability output) along with the eccentricity of that region –
a measure of the elongation of the region, ranging between zero and
one. To eliminate small regions suspected not to be roads, we removed
all very small regions (< 20 pixels) and those small regions (< 200
pixels) with a low mean probability (< 0.05) or low eccentricity
(< 0.95). To connect nearby road segments, we applied a dilation filter
using a 15 × 2 pixel ellipse oriented along the longest axis of the re-
gion, and reclassified any non-road pixels as roads where two or more
dilated regions overlapped. For the second post-processing step, we
mosaicked together all tiles and again identified unique contiguous
regions. We then removed all remaining regions containing less than
200 pixels, and any large regions (≥200 pixels) suspected to be non-
linear based on the ratio of the region area to the minimum convex area
of the entire region (ratio> 0.30 was removed). All thresholds were

selected based on visual inspection of early results and histograms,
however, results were not highly sensitive to small changes in the
threshold values.

2.3.3. Validation of road extraction
To quantify the performance of the road extraction routine, we

calculated three validation metrics – recall (i.e., completeness), precision
(i.e., correctness) and quality – at the pixel scale. We allowed for a
buffer of 25 m (Heipke et al., 1997; Wiedemann, 2003) to account for
the positional uncertainty of the RoadLab Pro ground data and the 5 m
spatial resolution of the RapidEye imagery. Since we were primarily
interested in accurately mapping presence or absence of road segments
rather than the precise positional location of roads, we deemed a 25 m
buffer to be suitable. Recall is therefore the percent of known roads
correctly predicted within 25 m and precision is the number of predicted
road pixels that were actually within 25 m of a known road. Quality is a
measure of overall goodness, taking into account both recall and pre-
cision, and calculated as:

=
×

− × +

Quality Recall Precision
Recall Recall Precision Precision

We validated both the initial CNN road prediction and the final
extraction to evaluate the degree to which post-processing improved
results. We validated the screened training and validation tiles, as well
as all the candidate tiles covering the ground truth dataset to gauge if
the CNN model was biased toward screened tiles. Since not all roads
were driven in every candidate tile, precision could not be calculated
using the ground-truth dataset alone. Therefore, we took a random
subset of 307 candidate tiles (to equal the number of screened training
tiles) and manually delineated all the roads in each of these tiles to
calculate precision across the entire ground-truth network area.

2.4. Updating the existing road network

Going from a pixel-wise road extraction to a vectorized road net-
work remains challenging (Xu et al., 2018), therefore we developed a
semi-automated approach to update the existing publicly available road
network using outputs from our road extraction routine (Fig. 2). The
first step was to remove segments from the existing road network that
were unlikely to be driveable roads. For each road segment in the ex-
isting network, we first calculated the mean probability of being a road
(derived from the CNN probability output) and the percent of that
segment that was predicted as a road in the final road extraction. We
then removed road segments if the proportion of the segment predicted
as road in the final extraction or the mean probability were below
certain thresholds identified by comparing the values for de-activated
(includes reclaimed roads) versus active forestry roads, which were
available for a portion of the study area (see Section 2.2.3). The
probability threshold was set at the 10th percentile of active roads and
the proportion threshold set at 10 %. Adding in new roads not present
in the existing network required a more manual approach. Road pixels
present in the final road extraction that did not already overlap with
segments in the existing road network were visually examined and
manually connected to the existing road network.

To evaluate how the existing road network would change if updated
using our approach, we calculated the length of roads that would be
removed and added, respectively. We also calculated road density (km
of road per km2) for the study area before and after updating the net-
work. Road density is an important indicator of the impact of roads on
wildlife (e.g., Boulanger and Stenhouse, 2014), and for this region road
density thresholds have been set for GBWUs within the recovery zone
for threatened grizzly bear populations (Alberta Environment and
Parks, 2016). We calculated changes in road density for each of the
GBWUs within our study area and, for visualization purposes, road
density changes calculated using a 7.44-km radius moving window,
representing the average daily movement rate of grizzly bears in the
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region (Nielsen et al., 2016).

3. Results

3.1. Road extraction

The final road extraction had high recall (0.89) and precision (0.87)
across the entire ground-truth dataset (Table 1). The initial CNN output
tended to over-predict roads, as indicated by very high recall (0.97) and
lower precision (0.72). False positives in the initial CNN prediction
were most commonly associated with streams and rivers (Fig. 3) and, to
a lesser extent, clouds and vegetated linear features such as gas pipe-
lines. False negatives were most likely to occur where roads were sur-
rounded by exposed soil and rock (e.g., open pit mines), occluded by
forest canopy or under cloud shadows.

The post-processing steps improved the precision of the road ex-
traction to 0.87 by removing uncertain predictions from the CNN as
well as small, isolated and non-linear regions. Post-processing tended to
successfully remove wide river sections and vegetated linear features
(Fig. 3b and c), however narrower river sections were less likely to be
removed (Fig. 3d). The drop in recall from 0.97 to 0.89 after post-
processing shows that some regions that were actually roads were re-
moved during the post-processing steps.

Recall and precision for the held-out validation dataset (n = 30)
were higher compared to the entire ground truth dataset both before
and after post-processing, which suggests that the algorithm may be
biased toward the types of roads in the screened tiles that were used for
CNN training and validation. Screened tiles were restricted to locations
where all roads within 2.25 km2 (i.e., the size of one tile) were driven
during ground data collection. These tiles may be more likely to contain
isolated roads surrounded by relatively homogenous forest compared to
the entire study area, where mining and forestry activities can result in
dense road networks surrounded by more heterogeneous land covers.

3.2. Road network updating

De-activated forestry road segments had a lower CNN-derived
probability compared to active forestry roads (Fig. 4), demonstrating
that the CNN probability output is useful for automatically removing
old de-activated roads. After we removed suspected non-roads from the
existing network using set thresholds and added in new roads using a
semi-automated approach, our final updated road network differed
substantially from the existing network in some areas (Fig. 5). Prior to
updating, there were 6202 km of roads in the study area according to
the public database. During updating, we removed 867 km of unpaved
roads, equivalent to about 15 % of the original network, and added 383
km of new roads, equivalent to 8 % of the total updated road network.
Updating the existing road network using this approach would increase
the road density for some regions of the study area and decrease it for
others (Fig. 6 and Table 2). After updating, the maximum road density
at the grizzly bear daily movement scale was 1.68 km km−2 and
changes ranged from -0.33 to +0.22 km km−2 (Fig. 6). At the wa-
tershed scale, road density decreased for 14 GBWUs, increased for two
GBWUs, and was unchanged for six GBWUs (Table 2). Most apparent

changes were associated with forestry roads, i.e. vegetation regrowth
on de-activated roads and construction of new roads for logging.
However, some of the decreases in road density in the northwest of the
study area were associated with open-pit mining roads, likely either a
result of reclamation activities or the fact that the CNN had difficulty
extracting gravel roads surrounded by exposed bedrock.

4. Discussion

4.1. Road extraction

Our CNN-based road extraction routine trained with RapidEye
imagery achieved reasonably high performance for unpaved rural
roads. Recall, precision and quality metrics were comparable to studies
using higher resolution imagery to extract paved roads across much
smaller areas using deep learning (e.g., Gao et al., 2019; Xu et al., 2018)
and other approaches (e.g., Miao et al., 2015; Zhou et al., 2019). The
lower cost and broader spatial and temporal coverage of RapidEye and
similar sensors (e.g., onboard the French SPOT satellites) would enable
more frequent road network mapping over larger areas compared to
very high-resolution imagery. RapidEye imagery is not free, however
(costs are currently around $1.00 per km2, depending on volume and
academic discounts), and it would be worth exploring whether freely
available imagery (e.g., from Landsat, Sentinel) can provide adequate
extraction of unpaved roads. In our study region, the roads of interest
were typically at least one to three pixels (i.e., 5–15 m) wide, which
suggests coarser resolution imagery may not be adequate. Additionally,
RapidEye imagery may not be suitable for detecting smaller roads and
tracks less than one pixel wide (e.g., emergency access, ATV routes).

The use of deep learning algorithms such as CNN has expanded
greatly within the past 5 years and is proving to be a useful tool in
extracting features and objects from remotely sensed imagery. Recent
advances in computing power and the ability to apply deep learning
algorithms in a spatial context allows users previously unable to utilise
the power of CNN, to now be able to do so. However, the initial output
from the CNN did not produce a satisfactory road extraction for this
study, and post-processing appears to remain a critical step to improve
performance across a range of landscape conditions (Alshehhi et al.,
2017; Das et al., 2011; Gao et al., 2019). Roads are difficult objects to
classify due to their spectral similarity to other high albedo objects such
as bare soil and rock, and their morphological similarity to other linear
features such as rivers and pipelines. Our simple post-processing ap-
proach improved the overall quality of our road extraction by about 13
% (Table 1), but required setting thresholds to filter out small and non-
linear regions and connect broken segments. These thresholds are likely
site dependent and a function of both the spatial resolution of imagery
and the inherent patterns of the landscape. Cross-validated approaches
could be used to identify thresholds for a given region, thus enabling a
purely automated approach.

4.2. Road network updating

Even after post-processing, a pixel-based road extraction is difficult
to convert into a fully connected vectorized road network for

Table 1
Road extraction accuracies before and after post-processing.

Dataset No. tiles CNN binary prediction Final road extraction

Recall Precision Quality Recall Precision Quality

All ground truth tiles 1850 0.97 *0.72 0.70 0.89 *0.87 0.79
Screened validation tiles 30 1.00 0.78 0.78 0.97 0.91 0.89
Screened training tiles 277 0.99 0.74 0.73 0.91 0.85 0.78

* Signify they were taken from a random sub-sample of equal size to the screened tiles (n=307) taken from the original ground truth dataset and manually
delineated to validate precision of road detection across the entire ground truth dataset (see Section 2.3.3).
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navigation (Xu et al., 2018). While crowdsourced road networks such as
OpenStreetMap provide increasingly complete datasets (Barrington-
Leigh and Millard-Ball, 2017), they are less likely to include rural roads
such as forestry logging roads (e.g., see supplementary material in
Ibisch et al., 2016), and we found OpenStreetMap to be far from
complete in our study area. In similar locations where a partial or out-
of-date road network dataset exists, using a CNN-based road extraction

to update the pre-existing network, as we have done here, may be a
suitable approach. Our approach to remove road segments from the
existing network that likely no longer exist (e.g., are now overgrown)
can be fully automated once thresholds are defined. Our method to add
in new roads required manual delineation, but was relatively fast since
we only had to connect extracted road segments that did not already
exist in the road network, rather than visually examine the entire image

Fig. 3. Examples of final road extrac-
tions and intermediate steps for various
training tiles. For each panel: ‘Input
data’ shows the RapidEye image over-
laid with ground truth data in red;
‘CNN outputs’ are the initial binary
road prediction and the road prob-
ability (brighter = higher probability)
produced by the CNN; and ‘Post-pro-
cessing; shows the binary road predic-
tion after the two post-processing steps.
Panel (a) shows a tile with good CNN
performance even without post-pro-
cessing, panel (b) shows a tile with
poor initial CNN predictions, but good
performance after post-processing, and
panel (c) shows a tile with poor per-
formance even after post-processing.
(For interpretation of the references to
colour in this figure legend, the reader
is referred to the web version of this
article).
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to discover new roads or manually delineate the entire network from
scratch. It is also possible that new roads could be automatically added
to the existing network from the road extraction using least-cost path,
tensor voting, active contour or fast marching method algorithms (e.g.,
Miao et al., 2015; Zhou et al., 2019).

The possible road network changes we identified in our study area
highlights the contribution of remote sensing to policy makers, land
managers, researchers and others that rely on accurate and up-to-date
road datasets. Even within this Canadian study area, where road data is
frequently updated and shared publicly, we estimated that changes to
the pre-existing road network could exceed 20 % of its current length.
Two-thirds of this change came from removing old roads, which sug-
gests that the public dataset in Alberta is less likely to reflect de-acti-
vated or otherwise overgrown roads than it is to include newly con-
structed roads. New roads are likely easier to identify during manual
delineation from satellite imagery or can be added from information
included in permit applications. By contrast, knowing when to remove
an old or de-activated road would generally require a site visit or
careful photointerpretation.

Up-to-date rural road network data are essential to sustainable
forest management (Bennett et al., 2011; Selva et al., 2015), and in our
study area road density is a key metric for the provincial grizzly bear
recovery plan. The provincial government has recommended that open-
access road densities within GBWUs should not exceed 0.6 km/km2 in

Core recovery zones and 0.75 km/km2 in Secondary recovery zones
(Alberta Environment and Parks, 2016). We identified one GBWU
where updating the existing road network using our method would
change the estimated road density from above the recommended
threshold to be below it (Table 2). We also identified several areas
where updating the existing road network could result in road density
changes at the grizzly bear daily movement scale exceeding 0.15 km/
km2 (Fig. 6). However, more ground data and methods to classify newly
detected roads are needed to confirm these numbers. For example, the
provincial road density recommendations are for open-access all
weather gravel roads, which do not usually include temporary tracks
within new forestry cut-blocks. These tracks are often impassable and
generally replanted to return to a forested state, though they tend to
appear as roads in satellite imagery for at least a year or two, which
may account for some of the road density differences in our study. One
simple solution would be to mask roads within recent cut-blocks from
analysis. Additionally, a remote-sensing based approach allows for re-
peated updating of road networks over time, which would not only
reveal changes and trends, but also enable improved accuracy by fil-
tering out temporary tracks and other single-year misclassifications
using time averaging or a Hidden Markov Model (e.g., Hermosilla et al.,
2018).

Fig. 4. Violin plots comparing known active
and de-activated forestry roads. Panel (a) is the
mean CNN road probability within 25 m of
forestry road segments and panel (b) is the
proportion of area within 25 m of forestry road
segments predicted as a road in the final road
extraction. Solid lines indicate median and
dashed lines indicate the 25th and 75th per-
centiles. Y-axis range is the highest and lowest
observed values, shown on a log scale.

Fig. 5. Example of how updating would change the existing publicly available road network in an area with recent forestry activity.
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5. Conclusions

We demonstrated that in rural landscapes even moderately high-
resolution RapidEye imagery can provide valuable information on road
locations. This finding is encouraging, as it would enable more frequent

mapping over larger areas compared to the current availability and cost
of very high-resolution imagery. Despite the advances in CNN, post-
processing remains a critical step for satellite-based road extraction and
it is still challenging to produce a fully connected, vectorized road
network directly from imagery. We introduced a routine to update an
existing road network by automatically removing old, overgrown roads
flagged during road extraction. New roads had to be added in manually,
which was time consuming and somewhat subjective, though aided by
the road extraction output. Ideally, new roads would always be in-
ventoried during construction by the entities creating them and end up
in a digitized spatial database. However, there would still be a need to
remove old roads from the database in dynamic landscapes where roads
are frequently de-activated, reclaimed or otherwise not maintained. To
maintain accurate and current road network datasets in such land-
scapes, we would recommend (1) creating an initial road network
through a combination of automated road extraction and semi-auto-
mated updating of available road network datasets, (2) developing
stricter requirements for documenting newly constructed roads, and (3)
removing old roads from the network using a routine like the one in-
troduced in this study. Ground data is necessary to validate steps 1 and
3. We found the use of participatory approaches to collect ground data
particularly useful to gather training and validation data over a large
area at minimal cost.
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respect to intellectual property. In so doing we confirm that we have
followed the regulations of our institutions concerning intellectual
property.

Fig. 6. Change in road density in the study area before and after updating the existing road network. Road density was calculated using a 7.44-km2 radius moving
window. Outlines within the study area represent the 22 grizzly bear watershed units (GBWUs).

Table 2
Road density before and after updating the existing road network at the scale of
individual grizzly bear watershed units (GBWUs). Only GBWUs with at least
100 km of roads are shown (16 out of 22 GBWUs shown; all those removed
were in the ‘Core’ recovery zone). GBWUs highlighted in bold indicate a change
that crosses the recommended road density threshold for the respective habitat
type.

GBWU Area
(km2)

———————————— Road density (km km−2)
————————————

Before After Change

Core recovery zone
Y86 782.4 0.27 0.26 −0.01
Y77 834.1 0.31 0.27 −0.04
Y69 491.7 0.52 0.42 −0.10
Y81 611.8 0.56 0.47 −0.10
Y53 295.7 0.68 0.66 −0.02
Y56 858.5 0.82 0.70 −0.12
Y79 361.6 0.92 0.75 −0.17
Y82 840.9 0.88 0.85 −0.02
Y70 523.8 0.87 0.89 0.02
Y61 648.5 1.02 0.98 −0.04
Secondary recovery zone
Y87 811.0 0.47 0.50 0.03
Y65 365.9 0.80 0.69 −0.11
Y73 618.8 0.95 0.81 −0.14
Y66 432.6 1.11 0.97 −0.14
Y63 570.8 1.04 0.98 −0.06
Y57 710.3 1.06 1.03 −0.03
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