Natural Resource/Fish and Wildlife Research Data Management: The Foothills Model Forest Approach

Christian Weik Foothills Model Forest

February, 2003

Outline (Presentation)

- Foothills Model Forest (FMF) overview
- Nature of the FMF business
- Issues with traditional data management
- FMF approach to better data management
- Benefits, successes
- Future plans

FMF Overview

- The FMF is dedicated to conducting research and implementing results on the ecological, economic and social values of the forest.
- Unique partnership of Industry and Government.
- Many other partners and collaborators.
- One of 11 Model Forests across Canada.
- Year 1 of Phase III.

Program Sponsors

Why Data Management?

- "...15 percent to greater than 20 percent of a companies operating revenue is spent doing things to get around or fix data quality issues."
- "...Data quality issues cost US businesses \$600 billion per year."
- FMF fish and watershed crew spent 4 man months in the last two years fixing data problems.

Nature of the FMF Business

- Several individual research programs areas
- Projects include:
 - Grizzly bear
 - Natural disturbance
 - Growth and yield
 - Fish and watershed
- Little sharing of data between projects
- Projects range from 1 to 6 years
- High turnover of researchers
- Very fluid, difficult to identify future needs
- Territorial attitudes

Issues With Traditional Data Management

- Little or no vision beyond the end of the short term objectives
- Few standards
- No metadata
- No awareness of the advantages to data management

Issues With Traditional Data Management...

• Examples.

- Local level indicators (LLI) example.
 - Inability to report at a landscape scale.
 - Different information, captured with poor documentation and very different formats.
- Enormous amount of time spent to compile relatively simple data.

Identify data management specialist(s)

- GIS personnel is a good fit and is mutually beneficial to the organization and the individual
- Provide data management training
- Must sell the change
 - Documented erroneous data
 - Documented time/cost to repair errors
 - Emphasize the amount of money spent to collect the data
 - GBP in excess of \$2M
 - FGYA in excess of \$750k

- Relatively easy sell at the FMF after eight years
- Foster collaboration between researchers and data managers
 - GIS team should be engaged anyway at the project planning stage
 - Promote proactive vs. reactive approach
 - Include data management in the planning objectives
 - Training of users in fundamental database skills
 - Provides more understanding to those impacted by change
 - Can be provided in-house

 Apply traditional database design processes to meet user needs

- Identify database objective(s)
- Needs assessment
- Database design, documentation
- Data validity checks (integrity)
- Efficient data storage (normalization)
- Ability to use data after initial objectives have been met
- Metadata capture
- Testing, acceptance, modification

Back-loading historical data

- Potential for huge cost/time overruns
- Cannot be underestimated
- Must engage personnel knowledgeable of the data
- Training
 - Effective in-house training using researcher's own data
- Maintain, adapt, monitor
 - Database design
 - Interface
 - Data

- FMF strategy is at the users level and very specialized in scope
- Data collection agencies will be responsible for providing good data to larger corporate databases

Data managers

Users

• Data management tools

- Microsoft access 2000
- Microsoft Visio enterprise
- Oracle (if necessary, not currently)

Successes, Benefits

- Individual (or several linked) Microsoft Access databases for each project
- Users know how their data are stored
- Users know how to mine data from their databases
 - Still more training required
- Realizing less time spent on data management, and more confidence in the data quality
- Grizzly bear research project database
 - Includes GPS locations to blood work to DNA analysis results
 - 30k+ GPS locations from collars
 - Spatial analysis performed using direct connection to database through ArcInfo

Draft Version

^	17-May-00	Record Review Needed	New Record
	Capture Team		
	Goski/Urquhart/Munro/Sorenson/Caulket/Stenhouse		
	Bears ID	Age Age Class	T
	G027	11 adult 🗨	
	LOCATION DATA:		
	General Location		
	Gravel Pitt		
	 BMU	LITM Fasting (NAD83) LITM Notthing	(NAD83)
	Pembina -	531846.5 5	871505.5
	,		
	MARKINGS:	Colles Tues ATC InVelocities V	
	150.070		ne
			telle ettere time
	Lar Frequency	Ear I ransmitter Type Ear Transmitter Init	ialisation time
	130.073		
	CAPTURE:		
	Capture Method	Snare Site Delivery System	
	snare 🔹	Gravel Pit 🔹 pneu dart rifle	-
	, <u> </u>		
	BODY MEASUREMENTS:	A 1 1977 1170 1	
	Estimated Weight (Kg)	Actual Weight (Kg)	
	3333	33.4	
	Straight Line Length (cm)	Zoological Length (cm) Chest Girth (cm)	
	100	3333	30
	LI COOO LV/	0000 PL 0000 PV/ 0000	
	LL 3333 LW	3333 NL 3333 NW 3333	
	SAMPLES COLLECTED:	blood-red (I) blood-purple (I)	
	Tooth ear plug	Yes Yes feces hair	clawtin
		blood-red (E) blood-purple (E) No	Yes Yes
	notes		
	captured with 2 yearling cubs		
P Record: 14 4 9 ► ► ► ► ► F = F = F = F = F = F = F = F			

Successes, Benefits...

Foothills Growth and Yield database

- 102 permanent sample plot locations in the Alberta foothills
- Includes ecological, competition, tree and photos
- 130k tree measurements in 2 years
- Uncovering many data collection issues using more complex queries

and a stranger of the second second

Future Plans

- Completion of a fish and aquatics database
- Storage of spatial data in DBMS
 - Realize true integration with spatial and non-spatial data
- Improve integration with field datalogger technology

• Why take this additional work on?

80% of GIS effort spent on data management.

