The Tria Project: Genomics of the Mountain Pine Beetle System

Janice Cooke, Adriana Arango, Catherine Cullingham, David Coltman, Patrick James, Jasmine Janes, Felix Sperling, Brent Murray, and the Tria Consortium
Outline

- Overview of the Tria Project
- Genomics 101
- **Physiology and Genomics:** defining species ranges on the landscape, how species and drought affect pine responses to attack, and how these might affect MPB populations
- **Population Genomics:** analyses of landscape-level genetic variation in MPB and pines, identifying factors that might influence population distributions now and in the future
- Genomics and Forest Management
- Genomics and Risk Assessment
- Summary
The Tria Project: A large-scale multidisciplinary collaborative effort

- University of Alberta
- University of BC
- University of Northern BC
- Canadian Forest Service

Physiological Genomics Studies

Biochemistry, Chemical Ecology, Genomic Resources...

Risk Modeling

Population Genomics Studies

Janice Cooke

Jack Scott

Adrianne Rice
Project Leaders
- Janice Cooke (U of A)
- Jörg Bohlmann (UBC)

Co-Investigators
- Brian Aukema (U Minn)
- Colette Breuil (UBC)
- David Coltman (U of A)
- Barry Cooke (CFS)
- Nadir Erbilgin (U of A)
- Maya Evenden (U of A)
- Richard Hamelin (CFS)
- Grant Hauer (U of A)
- Robert Holt (GSC)
- Dezene Huber (UNBC)
- Steven Jones (GSC)
- Christopher Keeling (UBC)
- Kathy Lewis (UNBC)
- Marco Marra (GSC)
- Brent Murray (UNBC)
- Felix Sperling (U of A)
- Tim Williamson (CFS)

Project Management
- Matthew Bryman (U of A)
- Karen Reid (UBC)

Numerous Collaborators

Postdocs / Research Associates
- Eri Adams
- Jay Anderson
- Adriana Arango
- Celia Boone
- Catherine Cullingham
- Walid El Kayal
- Katrin Geisler
- Dawn Hall
- Sajeet Haridas
- Uljana Hesse
- Kate Hrinkevich
- Patrick James
- Jasmine Janes
- Neils Jensen
- Ljerka Lah
- Inka Lusebrink
- Mario Pineda-Krch
- Isidro Ojeda
- Caitlin Pitt
- Adrienne Rice
- Jeanne Robert
- Amanda Roe
- Kishan Sambaraju
- Amy Thommassen
- Clement Tsui
- Ye Wang

Graduate Students
- Sepideh Alamouti
- Nic Bartell
- Christine Chui
- Erin Clark
- Scott DiGuistini
- Honey-Marie de la Giroday
- Lina Farfan
- Jordie Fraser
- Chris Hansen
- Lily Khadempour
- Euwing Teen
- Ye Wang
- Gayathri Weerasuriya

Undergraduate Students
- Simon Allard
- Travis Allen
- Kyle Artym
- Kathryn Berry
- Simren Brar
- Huang-Ju Chen
- Tiffany Clarke
- Charles Copeland
- Julia Dam
- Shane Doddridge
- Patrick Gaudet
- Andrew Ho
- Cierra Hoecher
- Byron Knoll
- Siew Law
- Jean Linsky
- Rosalyn Loerke
- Fang Yuan Luo
- Mehvash Malik
- Sophia McClair
- Genny Michel
- Rhiannon Montgomery
- Marcelo Mora
- Boyd Mori
- Mike Prior
- Ting Pu
- Andrew Sharp
- Patrick Welsh
- Christina Wong

Research Technicians
- Sean Bromilow
- Jeremiah Bolstad
- Stephanie Beauseigle
- Tiffany Bonnet
- Marie Bourassa
- Stephanie Boychuk
- William Clark
- Amanda Cookhouse
- Pat Crane
- Sophie Dang
- Christina Elliot
- Harpreet Dullat
- Matt Ferguson
- Joël Fillon
- Leonardo Galindo
- Hannah Henderson
- Ed Hunt
- Robert Jagodzinski
- Brad Jones
- Chelsea Ju
- Laura Kennedy
- Susanne King-Jones
- Chris Konchalski
- Jordan Koopmans
- Ben Lai
- Maria Li
- Yisu Li
- Emilia Lim
- Linette Lim
- Miranda Meents
- Dominik Royko
- Harpreet Sandhu
- Bin Shan
- Andrea Singh
- Bill Sperling
- Talya Truant
- Tyler Watson
- Caroline Whitehouse
- Mack Yuen
Genomes and Genomic Resources

Chromosomes

Genetic linkage map (relative positions of gene-based or anonymous markers)

Genome sequence

Expressed gene sequences

…AAGAGAGCCCTGTCGCTAAATGCAAGCCTTGAAGTACC…

(Adapted from Paul & Ferl, 2000)
Genomics is the high-throughput analyses of many genes and/or many individuals simultaneously.

Physiological genomics: monitoring large numbers of genes simultaneously for gene activity levels.
Population genomics: assessing genetic variation in large numbers of individuals simultaneously

Genomics is the high-throughput analyses of many genes and/or many individuals simultaneously.
Using genetic markers to identify MPB-attacked jack pine in spring 2010

MOLECULAR ECOLOGY
Molecular Ecology (2011) 20, 2157–2171
doi: 10.1111/j.1365-294X.2011.05086.x

Mountain pine beetle host-range expansion threatens the boreal forest

CATHERINE I. CULLINGHAM,* JANICE E. K. COOKE,* SOPHIE DANG,* COREY S. DAVIS,* BARRY J. COOKE† and DAVID W. COLTMAN*
*Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada,
†Northern Forestry Centre, Canadian Forest Service, 5320-122nd Street, Edmonton, AB T6H 3S5, Canada
Using genetic markers to identify MPB-attacked jack pine in spring 2010
Refining the lodgepole x jack pine hybrid zone

Cullingham et al. in press, Evolutionary Applications
Refining the lodgepole x jack pine hybrid zone

Logistic regression to model the relationship between environment/climate and genetic proportions

<table>
<thead>
<tr>
<th>Predictor</th>
<th>AIC</th>
<th>Marginal AIC</th>
<th>VIF</th>
<th>Coefficients</th>
<th>LRT*</th>
<th>Effect on p(Pj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>43498</td>
<td></td>
<td></td>
<td>49.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>50513</td>
<td>7015</td>
<td>6.040</td>
<td>-0.007</td>
<td>7016.8</td>
<td>-</td>
</tr>
<tr>
<td>Drought index (CMI)*</td>
<td>46690</td>
<td>3192</td>
<td>2.400</td>
<td>0.058</td>
<td>3193.5</td>
<td>+</td>
</tr>
<tr>
<td>Mean Annual Precipitation (MAP)*</td>
<td>43615</td>
<td>117</td>
<td>3.730</td>
<td>-0.001</td>
<td>118.8</td>
<td>-</td>
</tr>
<tr>
<td>Summer heat:moisture index (SHM)*</td>
<td>43509</td>
<td>11</td>
<td>3.610</td>
<td>-0.007</td>
<td>12.6</td>
<td>-</td>
</tr>
<tr>
<td>Extreme min. temp. (EXT_Cold)*</td>
<td>44524</td>
<td>1026</td>
<td>3.790</td>
<td>-0.307</td>
<td>1027.7</td>
<td>+</td>
</tr>
<tr>
<td>Northing - Latitude*</td>
<td>46671</td>
<td>3173</td>
<td>5.490</td>
<td>-0.580</td>
<td>3174.5</td>
<td>-</td>
</tr>
<tr>
<td>Easting - Longitude*</td>
<td>46804</td>
<td>3306</td>
<td>2.210</td>
<td>0.233</td>
<td>3307.2</td>
<td>+</td>
</tr>
</tbody>
</table>
Getting a handle on genetic variation in defense: do lodgepole pine and jack pine defenses differ?
Tree defenses matter at lower MPB attack densities, and are affected by genetics and environment.

This part of the curve is affected by host genetics and environment.

Genetics: resistance to MPB attack is moderately heritable in lodgepole pine (Yanchuk *et al.*), but is controlled by many genes with small effects.

Environment: Stressed trees seem to be favourite targets under lower MPB attack densities, while healthy trees appear to be favoured under higher MPB densities.
Measuring the effect of climate on defense: does drought affect pine defenses?

Climate Moisture Index (Hogg, 1997) output using BioSim (Barry Cooke)
Dissecting pine defense responses

Species
- Lodgepole pine
- Jack pine
- Hybrids

Water availability
- Well watered
- Water deficit

Inoculation treatment
- Wound (seedlings only)
- Wound/Inoculation with MPB fungus
- Control

Growth chamber studies
lodgepole & jack pine seedlings

Mature tree field studies
Hybrids, lodgepole & jack pine
Water deficit causes lodgepole and jack pine to close their stomata
Water deficit reduces photosynthesis in lodgepole and jack pine, reducing carbon gain

Lodgepole pine

<table>
<thead>
<tr>
<th>Day 14</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Inoculated</td>
</tr>
<tr>
<td>Control</td>
<td>Inoculated</td>
</tr>
</tbody>
</table>

Jack pine

<table>
<thead>
<tr>
<th>Day 14</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Inoculated</td>
</tr>
<tr>
<td>Control</td>
<td>Inoculated</td>
</tr>
</tbody>
</table>
Lesion development differs in lodgepole and jack pine, and is also affected by drought.
Drought affects gene expression associated with both pre-formed and induced defenses

Pbc chitinase2.1

- Water p=0.0008
- Fungi p=0.08
- W*F p=0.73

Pbc(+)-3-carene-synthase

- Water p=0.01
- Fungi p=0.002
- W*F p=0.26

Pbc chitinase1

- Water p=0.0006
- Fungi p<0.0001
- W*F p=0.005

Pbc(E)-β-farnesene-synthase

- Water p=0.01
- Fungi p=0.02
- W*F p=0.49

Increased constitutive expression

Decreased induced expression
In progress: genomics analyses to look at networks of gene expression in these experiments

Do any of the differentially expressed genes identified in this experiment contribute to genetic variation observed between individuals or species?
Adaptive variation in pines: using genetic markers to discover signatures of selection

Designed 1536 genome-wide genetic markers that are being used for high-throughput analyses of 558 jack, lodgepole and hybrid trees
Post-disturbance reforestation: can genetic variation insights be used to refine seed zones?
Similar genomic approaches are being used to investigate genetic variation in MPB
Population genetic analyses to examine MPB dispersal (gene flow) and genetic connectivity

Samarasekara et al. Molecular Ecology, in press
Can we detect signatures of selection for traits such as cold tolerance?

Selection (winter cold temperatures)

- Frequency: 5%
- Frequency: 20%

Cumulative % Mortality vs. Supercooling point (°C)
Several genomic insights are being used to inform risk model development.
Pathways by which genomics data inform model-based risk assessment

1. Genomics data:
 - neutral markers
 - dispersal and host range expansion
 - adaptive markers
 - e.g., cold tolerance

2. Data integration
 - Existing risk models
 - New risk models

3. Genomics-enhanced risk models

4. Model-based Risk Assessment

(a) and (b) represent the flow of information from genomics data to model-based risk assessment.
The current MPB outbreak has proven to be an excellent system for proof of concept application of genomics to forest management.

- Pine and MPB populations are heterogeneous
 - This landscape-level non-uniformity could affect MPB spread, particularly at lower densities and in sub-optimal climates/seasons

- Genomics is already being used to inform risk assessment and risk modeling

- Genomics has potential to inform reforestation and genetic conservation strategies and policies
Acknowledgements

David Coltman Adriana Arango Catherine Cullingham
Barry Cooke Stephanie Boychuk
Nadir Erbilgin Matt Bryman
Maya Evenden Charles Copeland
Brent Murray Sophie Dang
Felix Sperling Patrick James
ASRD, AB Innovates Jasmine Janes

Adrienne Arango William Clark
Catherine Cullingham Matt Ferguson
Stephanie Boychuk Joël Fillon
Matt Bryman Leonardo Galindo
Charles Copeland Ed Hunt
Sophie Dang Brad Jones
Patrick James Chelsea Ju
Jasmine Janes Susanne King-Jones
Miranda Meents Yisu Li
Dominik Royko Emilia Lim
Walid El Kayal Gayathri Samerasekera
Eri Adams Andrew Sharp
Dawn Hall Katherine Spencer
Jean Linsky Bill Sperling
Miranda Meents Tyler Watson
Dominik Royko Christina Wong
Walid El Kayal Mack Yuen
Eri Adams Yisu Li
Dawn Hall Emilia Lim
Jean Linsky Gayathri Samerasekera
Miranda Meents Andrew Sharp
Dominik Royko Katherine Spencer
Walid El Kayal Bill Sperling
Eri Adams Tyler Watson
Jean Linsky Christina Wong
Miranda Meents Mack Yuen